Welcome back to this series on abelianization and category theory! In case you’re new here, the content of this post depends on my last post and some basic group theory. This time we’ll be discussing the titular concept, abelianization, and formulating it in terms of universal arrows.

First, a quick note on notation for groups. I’ll be writing the operation in an arbitrary group as juxtaposition, using to denote the identity element, and to denote the inverse of . When discussing quotient groups, I’ll be using right cosets. With this clarified, we can introduce the definition which will be central to this discussion.

The commutator of two elements can “detect” whether those elements commute, as if and only if . Therefore, an abelian group can also be defined as a group in which all commutators are the identity. In a non-abelian group , commutators can be used to study how “far” is from being abelian. Informally, the more nonidentity commutators a group has, the “further” it is from being abelian. One of the goals of this post is to make this intuitive idea more rigorous. To begin with this, we’ll need one more definition.

It should be clear that for any abelian group , . For a more interesting example, consider the smallest nonabelian group, . We could compute by checking the commutator for every single pair of elements, but this would be a bit too much effort. Instead, there is a more direct approach due to Gary Myerson on MSE. For permutations and , the commutator must be an even permutation, as the parity of a permutation and its inverse match. In , the even permutations are the identity and the 3-cycles, which together comprise the alternating group . Because all commutators are even, must be a subgroup of . But cannot be trivial, and so .

Some groups are their own commutator subgroups; these groups are called “perfect groups”. The smallest nontrivial perfect group is . I’ve heard rumors that this is why arbitrary quintic equations cannot be solved by radicals, but I don’t know enough Galois theory to corroborate those tales; perhaps I’ll post about it here later if I have time to explore this further. At any rate, examples are useful for cutting our teeth, but in true categorical fashion, we’re more interested in chasing after general results. Here is one that will be very useful.

*Proof.* Let
and
; we must
demonstrate that
.
Since
contains all
commutators, it contains
. And since it is
closed under the group operation,
contains
. ◻

This can be helpful for ruling out candidates for the commutator subgroup, as non-normal subgroups can immediately be eliminated. It also shows us that every nonabelian simple group must be a perfect group, although there are also nonsimple perfect groups. However, the really useful part of this theorem is that it means we can consider the quotient group . But before we begin considering this group, we will prove the following theorem which explains why this group is of particular interest.

*Proof.* First, suppose the quotient group
is abelian, and
let
be elements of
. Since
is abelian,
.
Since
and
are in the same
coset, there exists some
such that
. We can
right-multiply by
to find
.
Since
and
are arbitrary, this
means
contains all of the
commutators in
. But since
is a subgroup, it is
closed under the group operation, which means it must also contain the
entire subgroup
.

Conversely, suppose , and let be elements of . Since contains all commutators, there exists some such that . This time, left-multiplying by gives , meaning and are in the same coset; . This means that for arbitrary cosets and in , we have , so is abelian. ◻

This theorem justifies the claim that
is the smallest
normal subgroup of
which gives rise to
an abelian quotient group. Conversely,
is the
largest abelian quotient group of
. As you may have
guessed, we have a special name for this group: the
*abelianization* of
, also denoted
. Once again, we
can consider some examples. Since for any group
,
,
every abelian group is isomorphic to its abelianization, which certainly
makes sense. For
, since the normal
subgroup
has an index of 2,
,
the cyclic group with two elements. Finally, as
is always the
trivial group, every perfect group has a trivial abelianization. Now, as
you have probably guessed, we will be interested in proving that
abelianization satisfies a certain universal property. Before we get
there, we will need the following result, which extends the first
isomorphism theorem for groups.

*Proof.* Define a mapping
by
. Since
this function is defined in terms of cosets, we must first show that it
is indepenent of the choice of equivalence class representative. Let
and
be elements of
which belong to the
same coset. Then there is an element
such that
. We need to
show
.
Since
, this is
rather simple:

Next, we must show that is a group homomorphism. For this, let and be two not necessarily equal cosets. Then we have:

Next, it is simple to see that makes the diagram commute, as . We must finally demonstrate that is unique relative to this property. To see this, suppose we have another homomorphism such that . Then for any coset , , so . ◻

This theorem, often referred to as the universal property of the quotient group, will be key in proving the result we are really after in this post: the universal property satisfied by a group’s abelianization.

*Proof.* Carrying on from the previous theorem, it suffices to
show that
is contained in
. Since
is generated by
the commutators of pairs of elements in
, it suffices to show
that for any elements
,
That is, we want to show that
,
or equivalently, that
. Since
is abelian, this is
rather simple:

◻

Now, this theorem is fine and all, but it leaves one question begging to be asked. How can we formulate this as a universal arrow? It has the same shape as the universal arrow diagrams we discussed last time, but we need to introduce a functor. For this, we will consider the inclusion functor . We claim that for any group , the pair described above is a universal arrow from to . To show that this is the case, we must demonstrate that for every abelian group and group homomorphism , there is a unique homomorphism of abelian groups such that the following diagram commutes:

Since is the inclusion functor, it leaves , , and unchanged, so this follows immediately from the theorem we have just proven. This means that (up to isomorphism), the abelianization of a group may be characterized as a universal arrow from to the inclusion of in . That’s all I wanted to discuss this time around; next time, I’ll be discussing adjoint functors, a very powerful categorical concept that will tie a lot of the work we’ve done so far together.