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Brief Note on the Development of the Framework

Fluid dynamics often relies on the Navier-Stokes equations (NSE) to model
various flow phenomena. I have here a theoretical framework which recasts the
equations of fluid mechanics in a Lagrangian formalism in a way where it can
be shown that the kinetic energy of the vorticity explicitly break the scaling
symmetry of the theory. This explicit symmetry breaking potentially provides a
mechanism by which energy cascades and dissipation occur in turbulent flows.
Additionally it demonstrates how the inclusion of vorticity fixes a scale.

This framework was developed from abstract symmetry principles and aims
to address multiple problems in physics. My first goal was to understand how
motion couples to the underlying geometry resulting in emergent dynamics. Fluid
dynamics are fundamentally “shaped” by geometry, so I began by exploring
simple fluid systems.

Some brief calculations already suggest the role of local scaling symmetries. If
we define a conservative vector field to model a wave propagating in a pipe with
cross sectional area S

v = −∇ϕ

we know that it is by definition irrotational: ∇ × v = 0. The mass flow field
j = ρSv is also irrotational for constant cross sectional areas ∇ × j = 0. Thus
the field ϕ exhibits self-similarity at a scale (for any choice of S). However if we
locally fix a scale by promoting S → S(x) to a varying cross sectional area, we
see that the mass-flow becomes rotational

∇ × j = ρ∇S × ∇ϕ ̸= 0.

This is a very basic derivation but I hope the results are clear, locally fixing a
scale introduces additional dynamics, particularly rotational dynamics.

In a similar manner, by demanding that a real scalar field ϕ be invariant under
local scaling transformations a rotational vector potential V µ must be introduced
resulting in a Helmholtz-decomposition. An interesting consequence is that the
symmetry of the Lagrangian is explicitly broken by the kinetic term for the vector
potential, again suggesting the association between vorticity and scale-fixing.
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Another result is that the homogeneous equations for the vector potential imply
that the field is irrotational and thus conservative.

Theoretical Background

Scaling Symmetry and CFT Delving deeper into the symmetry

ϕ → σϕ, (1)

where σ is the scaling factor, ties to conformal field theory (CFT) are considered.
Global scaling symmetry is almost universal as it corresponds to the trivial case
where σ is a constant, the more relevant and interesting cases are the local scaling
symmetry that occurs when σ(xµ) becomes a function of spacetime coordinates
xµ.

We recognize that the scaling transformation σ(xµ) is a conformal dilation,
indicating that the group of scalar matrices C is a subset of the conformal group
G:

C ⊂ G.

This conformal dilation is a Weyl transformation, defined as the local scaling of
the metric tensor:

gab → Ω(xµ)−2gab,

where the conformal factor Ω(xµ) = eω(xµ) generates a new metric g̃ab =
Ω(xµ)−2gab in the same conformal class as gab. The field ϕ has a conformal
weight ∆, where σ = e∆α(xµ). Identifying σ with Ω, we can conclude that α = ω.
Combining Equation (1) with

gµν → σ−2gµν (2)

we have two transformation laws. In order to understand how V µ transform, we
need to formally define the theory.

Formulation of Scalar Field Theory

To ensure that the symmetry is respected, the covariant derivative

Dµ = ∂µ − V µ

is introduced, where the field V µ = (p, v) has components of pressure and
velocity. In order for the derivative of ϕ to respect the symmetry we need Dµϕ
to transform the same as ϕ so

(Dµϕ) → σ(Dµϕ) (3)

or equivalently Dµ(σϕ) = σ(Dµϕ). To satisfy Equation (3), we conclude that
V µ must transform as

V µ → V µ + σ−1∂µσ (4)
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where δV µ = σ−1∂µσ. Now we have the full set of transformations, Equations
(1), (2), (3) and (4)

ϕ → σϕ

gµν → σ−2gµν

(Dµϕ) → σ(Dµϕ)

V µ → V µ + σ−1∂µσ.

We can then modify our Lagrangian for a free scalar field L(ϕ, ∂µϕ) → L(ϕ, Dµϕ)
so the minimal coupling for this theory is

L = (Dµϕ)(Dµϕ). (5)

Equation (5) has the equations of motion (EOM)

□̃ϕ = 0 (6)

where □̃ = DµDµ. Expanding the terms we get

∂µ∂µϕ − Vµ∂µϕ − V µ∂µϕ − ∂µV µϕ + V µVµϕ = 0.

Note that both Equations (5) and (6) obey the conformal symmetry we have
outlined.

Explicit Symmetry Breaking

Equation (5) describes the minimal coupling but for a complete description of
the system we need a kinetic term for V µ. I defined the term

LV = −1
4ΩµνΩµν

where Ωµν = ∂µV ν − ∂νV µ as is typical for vector fields in gauge theory. Note
that Ωµν is the vorticity tensor, and that the term LV is not symmetric under
the conformal transformations

−1
4gµαgβνΩµνΩαβ → −1

4σ−4gµαgβνΩµνΩαβ . (7)

This means that including the kinetic term for the field V µ results in the explicit
breaking of the conformal symmetry and thus fixes a scale. The total Lagrangian

LT = (Dµϕ)(Dµϕ) − 1
4ΩµνΩµν (8)

can now be used to describe the whole system. The EOM when varying with
respect to V µ are

∂µΩµν = jν (9)
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which can be combined with Equation (6) to obtain

□̃ϕ = 0
∂µΩµν = jν .

Here Equation (6) respects the symmetry whereas Equation (9) does not sug-
gesting that the scalar potential field maintains its invariance.

Some calculations reveal that the current can be defined as

jµ = −4(Dµϕ)ϕ = −2πµϕ (10)

where πµ is the canonical momentum. Expanding

jµ = −4(∂µϕ)ϕ + 4V µϕ2

it becomes clear that ϕ couples quadratically to the rotational field. Further
investigations suggests the current to be associated with mass-flow rates, but
first we need to use the framework outlined to actually represent fluid systems
before we can further analyze.

Fluid Representation

It may not seem immediately obvious that Equation (8) can represent a fluid
system, indeed it took me a while to come to that conclusion. Especially in the
case of the field V µ which I struggled to interpret physically for quite some time.
I have landed on a Maxwell-like representation that I am satisfied with, and so
far the results have been promising. Indeed the theory already greatly resembles
classical electrodynamics so why not continue with the analogy?

The scalar potential is easy to represent. The state of a fluid can be given by
it’s pressure and velocity p and v respectively so we define the four-vector

Uµ = −∂µϕ (11)

which has components Uµ = (
√

βp,
√

ρ0v) where 1√
βρ0

is the speed of sound.
For the time being we will work dimensionless to simplify the calculations, the
constants will be relevant later. Combined with the incompressible field equations
derived from the NSE we have

∂v

∂t
= −∇p

∇ × v = 0

thus ϕ adequately describes incompressible flow consistent with then NSE. Note
that the EOM of this theory, L = UµUµ, are that of a free scalar field

∂µUµ = 0 (12)
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which will become relevant later for gauge fixings.

For the field V µ I used a Maxwell-like approach by defining two vector fields in
3 dimensional space U and W which I have denoted the transport (or convective
acceleration) and vorticity respectively. Similar to electric and magnetic fields

U = (v · ∇)v = −∇p − ∂v
∂t (13)

W = ∇ × v (14)

Where U is analogous to the electric field and W the magnetic field. These fields
allow us to represent and analyze rotational flow in ways that are somewhat
familiar. Using Equations (13), and (14) we can reinterpret Equation (9) as a
set of Maxwell-like equations and their integral forms

∇ · U = ρ

ρ0
,

∮
U · dS = Q

ρ0
(15)

∇ · W = 0,

∮
W · dS = 0 (16)

∇ × U = −∂W

∂t
,

∮
U · dl = −∂Γ

∂t
(17)

∇ × W = ∂U

∂t
,

∮
W · dl = ∂Q

∂t
. (18)

Here the intricate interactions contained in Equation (9) can be appreciated
with this representation, where they manifest as exchanges between U and W .

Additionally it follows from Maxwell theory that there exists stable self-
propagating waves which I am, creatively, calling UW waves. Taking the curl of
Equations (17) and (18) we get

□U = −∇ρ (19)
□W = 0. (20)

I think that UW waves could be useful for describing large stable structures
in turbulent flows, however more validation is needed. Vortex shedding is a
particular physical case I can think of where there are stable self-propagating
vorticity waves W . The shedding of vortices in alternating directions reflects
the Maxwell-like nature of this system. It is also relevant that rotation in the
system explicitly breaks the symmetry of Equation (8) which fixes a scale. This
is particularly relevant as it aligns with known concepts in the study of turbulent
flows.
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