Proving absence, numerosity and existence

written by 200007 1016 on Functor Network original link: https://functor.network/user/942/entry/918

Proof of Absence

There are no distinct natural numbers x and y that make $\frac{x^3+y^3}{1/x+1/y}$ a square number.

1

If u and v are coprime, then u and u + v are coprime.

2

For two odd numbers 2m-1 and 2n-1, $(2m-1)^2+(2n-1)^2$ is even but not divided by 4 while $(2m-1)^2-(2n-1)^2$ is divided by 4.

3

Sum of two coprime square numbers is not divided by 3 because $(3m-1)^2 + (3n-1)^2$, $(3m-1)^2 + (3n)^2$, $(3m-1)^2 + (3n+1)^2$ and $(3m)^2 + (3n+1)^2$ are not divided by 3.

4

Dividing $\frac{x^3+y^3}{1/x+1/y} = xy(x^2-xy+y^2) = z^2$ by the fourth power of the greatest common divisor of x and y leads to $uv(u^2-uv+v^2) = w^2$ for coprime u and v. Because u^2-uv+v^2 is coprime with both u and v, u and v must be square numbers.

5

When x and y are coprime and $x^2+y^2=z^2$ then x and y cannot be both odd. Let y be even. Then for some coprime u and v, $\frac{u}{v}=\frac{z}{y}+\frac{x}{y}$ and $\frac{v}{u}=\frac{z}{y}-\frac{x}{y}$ from $y^2=(z+x)(z-x)$. Then $\frac{u^2-v^2}{2uv}=\frac{x}{y}$. If u and v are both odd then y cannot be even, so one is odd, the other is even, $x=u^2-v^2$ and y=2uv.

6

When x and y are distinct coprime that satisfies $x^4 - x^2y^2 + y^4 = (x^2 - y^2)^2 + (xy)^2 = z^2$ with minimal xy, let x be odd and y be even. Then $x^2 - y^2 = u^2 - v^2$ and xy = 2uv for some coprime u and v. From the prior equation, u is odd and

v is even. Then from the latter equation, x=ab, y=2cd, u=ac and v=bd for some coprime a,b,c and d with d being even. Then $(ab)^2-(2cd)^2=(ac)^2-(bd)^2$ leads to $b^2(a^2+d^2)=c^2(a^2+4d^2)$. Because a^2+d^2 is not divided by 3, a^2+d^2 and $a^2+4d^2=(a^2+d^2)+3d^2$ are coprime. So $b^2=a^2+4d^2=a^2+(2d)^2$ and $a^2+d^2=c^2$. Then from the prior equation, $a=m^2-n^2$ and d=mn for coprime m and n with one being even and the other being odd. Then $(m^2-n^2)^2+(mn)^2=c^2$, but $mn=d<2cd=y\leq xy$ violates the first minimal condition. Let x and y are both odd, then $x^2-y^2=2uv$ and $xy=u^2-v^2$ for some coprime u and v with one being even and the other being odd. Then $(u^2-v^2)^2+(uv)^2=(xy)^2+(\frac{x^2-y^2}{2})^2=(\frac{x^2+y^2}{2})^2$ but there are no such u and v as seen above.

Reference

Pocklington, Some Diophantine Impossibilities, page 111. Retrieved from Oliver Knill's homepage.

Proof of Numerosity

There are numerous natural numbers x and y that make $1 + \frac{x^3 + y^3}{1/x + 1/y}$ a square number.

$$\frac{2uv}{1 - u + u^2 - 4uv^4} = \sum_{i=1}^{\infty} a_i(v)u^i \tag{1}$$

$$a_0(v) = 0 \tag{2}$$

$$a_1(v) = 2v \tag{3}$$

$$a_{i+1}(v) + a_{i-1}(v) = (4v^4 + 1)a_i(v)$$
 (4)

$$b_i(v) = a_i^2(v) + a_{i+1}^2(v) - (4v^4 + 1)a_i(v)a_{i+1}(v)$$
(5)

$$b_i(v) - b_{i-1}(v) = 0 (6)$$

$$b_0(v) = 4v^2 \tag{7}$$

$$1 + \frac{a_i^3 + a_{i+1}^3}{1/a_i + 1/a_{i+1}} = 1 + a_i a_{i+1} (a_i^2 - a_i a_{i+1} + a_{i+1}^2)$$
 (8)

$$= 1 + a_i a_{i+1} (b_i + 4v^4 a_i a_{i+1}) = (2v^2 a_i a_{i+1} + 1)^2$$
(9)

Proof of Existence

There are natural numbers x and y that make $2 + \frac{x^3 + y^3}{1/x + 1/y}$ a square number.

$$\{x, y\} = \{2 \times 47 \times 79 \times 13799, 11801 \times 24121\} \tag{10}$$

$$\{x, y\} = \{2 \times 47 \times 79 \times 13799, 11801 \times 24121\}$$

$$2 + \frac{x^3 + y^3}{1/x + 1/y} = 42648710892754998^2$$
(11)