The Three Woes of Bitcoin’s Fee Market (and How
BlockDAGs Can Fix Them) — Part III: BlockDAG
Fee Markets

written by Parallel Thoughts (Shai Deshe) on Functor Network
original link: https://functor.network /user/912/entry /958

This post was written as a cursory version of a future part in my
open book, understanding blocckDAGs and GHOSTDAG

« Part I1

In the previous posts we analyzed blockchain fee markets and isolated some
unsavory properties that manifest as their equilibria: race-to-the-bottom, star-
vation, and price aberration. We named these the three woes. In the current
post, we do the parallel analysis for block DAGs. In the next post, we discuss
how these differences affect the manifestation of the tree woes, and conclude the
discussion.

The current post is by far the most mathematically involved in the series. To
make it welcoming to a less technical crowd, I delegated the computational work
to clearly separate sections and did my best to ensure the post is consistent and
self-contained if they are skipped.

This post double-serves both as a layman exposition and for recording new
observations that I am currently inspecting. In particular, I add interesting
computations and results to this post as I find them. These extra-hard sections,
marked with a double star, can rely on arbitrarily advanced math (though
currently, it doesn’t go beyond advanced undergrad), and are not written as
“educational content”. They are mostly here so I could easily share them with
colleagues.

Pure Fee Markets With Multiple Leaders

We now need to extend the mining game we defined for blockchains to accom-
modate several miners. For simplicity, we assume that there are N blocks per
round (in reality, the number of blocks per round fluctuates around an average
that can change with the network conditions), where each block was created by
a different miner, and that the miners do not cooperate in any way.

The offering rounds remain the same, but the payoff rounds change. Here, each
miner indeed reports a choice of ¢ transactions. But if several miners include
the same transaction, its fee will go to one of them uniformly randomly.

Remark: OK, it is not ezactly uniformly randomly. What actually happens
is that the miners themselves are randomly shuffled: they are numbered from
1 to N in some random way. If two miners include the same transaction, the

https://shai-deshe.gitbook.io/understanding-blockdags-and-ghostdag
https://functor.network/user/912/entry/953
https://functor.network/entry/953

one with the lower number gets it. In other words, we don’t resolve the conflict
per transaction, but per block. If Alice and Bob both included the same two
transactions, then either Alice or Bob will get the fee for both transactions.
There is no scenario where Alice wins one fee, and Bob the other. However,
if we consider only one of the transactions, it will go with probability half to
either Alice or Bob (assuming there are no more miners). In formal terms: the
probability that one transaction goes to Bob depends on the probabilities that
other transactions go to Bob, but the marginal distribution of a single transaction
is uniform across all miners who included it.

This dynamic kind of shakes the ground at the feet of the miners, which is a
good thing because the entire point I'm trying to make is that Bitcoin miners are
just a bit too comfortable. Note that the source of unease is not the randomness
itself, miners, above all, are very used to randomness. What makes this setting
truly interesting is that now the choices of one miner affect the profit of another
miner. Bob’s expected value depends on Alice’s choices. It is the consequences
of this phenomenon that we seek to understand.

Equilibria Analysis

Strictly speaking, we need to analyze the equilibria strategies for both users
and miners. Like before, we can’t do a precise analysis of the users, and while
approximate models are possible, we will be satisfied with a qualitative discussion.
This discussion will start very similarly to the case for block chains, but will
have wildly different outcomes.

But analyzing the miner now becomes much more demanding, compared to
the trivial equilibrium we had for blockchains (which was “just take the most
profitable transactions”).

At the payoff round, the state of the game is a list of m fees, which we will
denote Fi, ..., F,,. Say that each miner only has to select one transaction (that
is, £ = 1). A strategy is specified by a list of probabilities p1, ..., pm, which we
interpret as “include the transaction paying a fee of F,,, with probability p,,”. If
{ is two, then we need to specify a probability for any pair of transactions, and
so on. In fact, as long as ¢ is sufficiently smaller than m, the number of possible
choices grows exponentially with ¢ (the exact number is given by a binomial
coefficient).

To avoid this complexity, we will first assume that each miner only chooses one
transaction. That is, that £ = 1. Computing the exact answer for higher values
of ¢ is quite difficult, but we will see how it can be simply approximated very
well.

Another bane of our existence is that, since there are N miners, and the strategy
of each miner has m probabilities, then there are in total N - m probabilities
in their combined strategies. Maximizing for that many variables is still quite
daunting.

https://shai-deshe.gitbook.io/understanding-blockdags-and-ghostdag/supplementary-material/math/stuff-you-should-know/binomial-coefficients
https://shai-deshe.gitbook.io/understanding-blockdags-and-ghostdag/supplementary-material/math/stuff-you-should-know/binomial-coefficients

Fortunately, we can leverage the symmetry of the problem. Since all miners have
the exact same information and options available to them, we can assume that
there exists a symmetric equilibrium, and in fact, it is the only stable equilibrium
(though actually proving this requires some heavy machinery). This means that
we only need to solve for m variables, describing a single strategy (p1,...,Dm)
that all miners use.

Even under these assumptions, solving the general case is still quite a headache.
So instead, we will consider three much simpler yet very illuminating cases:

1. Two miners selecting one out of two transactions (N =2, =1, m = 2)
2. Two miners selecting one transaction (N = 2, £ = 1, general m)
3. Uniform general case (general n, ¢, and m, but Fy = ... = Fy,)

First Case

This is the simplest case that is not trivial. It contains enough complexity to
exhibit the consequences of multiple leaders quite nicely.

Recall that we consider two minutes that select one out of two transactions. Let
us denote the fees they are paying = and y, and assume that x > y. We can
describe a strategy by a single number p, which we understand as the probability
of including z, whereby we include y with probability 1 — p.

What is the best strategy?

Before jumping into the calculus, let us try some natural candidates and see how
they fare.

Strategy I - Maximum: Select x. That is, p = 1.

This strategy ignores the existence of the other miner and follows the optimal
strategy for the single miner case. What is its expected profit?

Recall that we consider the case where both miners apply the same strategy.
Hence, both miners will select =, and the probability for each miner to gain the
fee is 1/2, resulting in an expected profit of x/2.

For £ = 100 and y = 1, the expected profit is /2 = 50. What about 2 = 100
and y = 997 Well, the expected profit doesn’t really care about the actual value
of y, as long as it is lower than z, so it remains 50.

Strategy II - Uniform: Select either z or y with the same probability. That
is, p=1/2.

The miners become aware of the fact that collisions harm their expected profit
and try to avoid it by flipping a fair coin. What would be the expected profit
here?

There are four cases, each happening with the same probability of 1/4:

o Both miners selected z, expected profit is /2

o Both miners selected y, expected profit is y/2
e I chose x and other miner chose y, expected profit is z
e I chose y and other miner chose x, expected profit is y

Since all events are equally probable, the expectation is just their simple average.

g\g T Ty Y=gy

For x = 100 and y = 1 this comes out 37.875, which is clearly worse than the
maximal strategy. But for 2 = 100 and y = 99, this comes out $74.625%, which
is better!

So if neither of these strategies is optimal, what is? We will work out the answer
using some high-school-level pre-calculus: we will write the expected outcome as
a function of p and derive it to find its maximum. I will defer the calculation
itself to the next section (that you can skip if you don’t feel like doing math).

The upshot of the calculation is the following:
Strategy III - Optimal: select x with probability

T
x+y

p:

The expected profit from this strategy is

1 Ty

5 (x +y s y) .
Let’s see how we did! First, for z = 100 and y = 1 we get a profit of 50.005 which
is ever so slightly higher than the maximal strategy. For x = 100 and y = 99 we
get 74.6257 which is again just above the random strategy. The impressive feat
is that it is better than both at the same time.

In hindsight, it should not come as a surprise that the maximal strategy is
almost optimal first case: if one transaction is 100 times more profitable than the
second, then surely this offsets the expected profit lost by a chance of collision.
It should also come as no surprise that the uniform strategy is almost optimal
for the second: if the transactions pay about the same, then choosing one over
the other doesn’t meaningfully change the profit, so it is better to do whatever
possible to reduce the chance of collisions.

What happens around the middle, say at x = 100 and y = 507 Here the maximal
strategy still expects 50, but now the uniform strategy nets 56.2, while the
optimal strategy gives 58.3.

We finally note that the optimal strategy doesn’t actually depend on the values
x and y, just on the ratio between them. We can see this by rewriting the
expression we got:

x 1
r+y 14y/x

p:

The optimal strategy is the same whether x = 100 and y = 50, or whether z =1
and y = 0.5. Multiplying = and y by the same number « doesn’t change the
optimal strategy (though the expected profit of this strategy does get multiplied
by).

For that reason, we can just assume x = 1, and that y < 1, and plot the expected
profit from the optimal, uniform, and maximal strategies as a function of y:

1i . ! |
Optimal profit
Uniform profit

Maximal profit
)8

16

i
2.4 /

/ Probability optimal strat

)2
v chooses smaller ixn

Al 0.2 0l4 06 08 1

I also plotted the probability y is chosen as a function of y.

We see that the optimal strategy kind of morphs from the maximal strategy
around 0 to the uniform strategy around 1, which makes a lot of sense.

Remark: We can also compute that the shift in optimality between the uniform
and maximal profit happens exactly when x = 3y. For example, if z = 30
and y = 10 we easily see that the maximal and uniform strategy both have an
expected profit of 15. The optimal strategy still beats both with 16.25.

The Computation* One easy way to generalize the computations we did for
the maximal and uniform strategies is to use a probability table. In such a table,
each row represents a choice by one miner, and each column represents a choice
by the second miner. The matching cell is the expected profit conditioned on
these choices. The title of each row/column is the probability that the miner
chose this option, so the probability of each cell is the product of the probabilities
written in the title of its respective row and column. Sounds complicated? An
example will make it much simpler.

For the maximum strategy, we have the following table:

1 0
1 x/2 Yy
x y/2

So we see that the expectation /2 obtained in the top-left corner has probability
1-1 =1, and the rest have probability 0.

When we switch to a different strategy, we do not change the values in the cells.
The expected profit given some particular selection by the miners remains the
same. The only thing that happens is the probability that this selection will
actually occur.

For the uniform strategy, we get the following table:

1/2 1/2
1/2 x/2 Yy
1/2 x y/2

We see that here all cells have the same probability of 1/4, making the total
probability just the sum of all cells divided by four. In other words, their average
value.

In the general case, we have a probability p to choose z, so we obtain this table:

P 1-p
p z/2 Y
1—p T y/2

So now we follow the same procedure, we multiply each cell by the headers of
its row and column, and sum the results:

pm-§+pﬂ—p%y+0—p%pﬂﬂﬂl—m~O—p%

NS

and you can verify that this simplifies to

(2p—p*)az+(1-p)y).

N

I will leave it to the reader to derive this expression with respect to p, compare
it to zero, and solve for p. The final result is:

x
x4y’

p =
as expected.

Substituting this value of p into the equation we found for the expectation gives
the expression we got for the optimal expectation, as the reader is invited to
verify.

Second Case
Now we have two miners (N = 2) selecting one (¢ = 1) out of m transactions.

The solution, it turns out, is best expressed in terms of what’s called a harmonic
average. It seems a bit weird at first, but it has a nice motivation.

The standard way to average numbers is called the arithmetic mean, defined for
a list of numbers Fi, ..., F, as

1

n

A(Fy, ..., Fy) (Fi+...+F,).

The harmonic mean is a different way to average numbers, that is more suitable
to our computation. It is defined like this:

n

H(F,.. Fp)=—.
Et.+E

I wrote a beautiful segment about the harmonic mean and how you already know,
but then I realized that it interrupted the entire flow of the post, so I deferred
it to an optional section below. Suffice it to say, if we think of the everyday
arithmetic mean as the correct way to average speeds, then the harmonic mean
is the correct way to average rates.

As usual, I will defer the computation to a skippable section below.
The result is the following strategy:

B mle(F)
pi=l-———p—

Before we move on, we note that one can (quite easily) find for any m > 2 values
Fy, ..., F,, such that, according to the formula above, p; < 0.

We call such instances degeneracies. We handle degeneracies in a later section,
but for now, we will remain in the regime where no degeneracies happen, and
this solution works.

The expected profit for each miner in this case is given by

m <A(F1,...,Fm)— (7’”>2H(Fl,...,Fm)>~

2 m

The Harmonic Mean and How You Already Know It The harmonic
mean might seem a bit... alien, but you've actually used it before without even
realizing it. When you were a kid, you were probably given an exercise like this:
if one builder builds one wall in three days, and another builder builds one wall
in two days, how long would it take both builders to build two walls together?

We can’t just add the days up, that makes no sense. To correctly compute the
answer, we realize that if a builder builds a wall in 3 days, then they build %
walls in a day. The second builder builds % walls in a day, so together they build
% + % walls in a day. We translate this quantity back from “walls per day” to
“days per wall” by taking the reciprocal again. This gives us how long it would
take to build one wall, so we multiply it by two to get:

1
-—— = H(3,2).
T, 1 J
312
The key insight is that the arithmetic mean is the correct way to average speed,
while the harmonic mean is the correct way to average rates. To hit the nail on
the head, you can convince yourself that

1
H(F,...,F,)= —F———.
A (; ;)
o T
The Computation** Say that there are two miners selecting one of the
transactions paying Fi, ..., F,,. Given a strategy pi,...,Dm. Say the first miner

selected Fj, conditioned on that, their expected profit becomes F;((1 — p;) +
pi/2). Since they choose F; with probability p;, their expected profit from
this transaction alone is obtained by multiplying throughout by p;, getting
F; (pi(1—p;) + 3p7).

To make things a bit simpler (and more readily generalizable) we can define the
function

Sz (p) = (p(l —p)+ ;zf)

and obtain that the expected profit from F; alone is exactly F; - S(p;).
Hence, the total profit is given by the function:

i=1

We want to maximize this function with respect to the constraint g(p1,...,pn) =
p1+ ...+ pm—1=0 (we will ignore the constraints p; > 0 for now).

By using the method of Lagrange multipliers, we can find that there is some real
A such that for each i, j we get the equation

of _ of
opi Opj’

but since the only part of f that depends on p; is the summand F; - So(p;) these
conditions can be rewritten as

of _ of
opi Op;’

d 1 d 1
Fe—p —Zp2) = F— S Zp2) .
Yy (pz 2“) Y dp <p3 2“)

One can verify that after differentiating and isolating p; we find the relation

=1 (1=

which we plug into the constraint g to obtain

Jj=1
m FZ
= 1— 2 (1—p
> (1-50-m)
j=1
1
:m_(l_pZ)FiZf
— Lj
j=1
S
=m—(1—p;) F;m =1 E
m
—m— (1= p)
- pi H(Fla 7Fn)m

https://en.wikipedia.org/wiki/Lagrange_multiplier

which after some rearrangement becomes

m—1H(F,...,Fy)

pi=1-—

as needed.

By plugging this optimal strategy into f we obtain the maximal expected profit.

Third Case

The general case is a bit involved but becomes much simpler if we assume all
transactions pay the same fee F'. In this case, the problem becomes much more
symmetric and it is easy to conclude that the uniform strategy is the equilibrium
(to prove that one can e.g. use the observation that an equilibrium strategy for
transaction selection must be symmetric, and show that non-uniform strategies
provide lower expected profit).

We can ask ourselves, if we add a new transaction, how high would it have to
be to be non-degenerate? It is easiest to express the value of the transaction as
« - F and see how low a could be without hitting degeneracy. Say we have m
transactions of value F' and we add a single transaction of value oF. Then for
the transaction to have positive inclusion probability it must satisfy

m times
m /—/H
aF > H|F,....,F,oF
m+1
I will leave the computation to you, but it comes out « > ml-u

This doesn’t look very good, does it? Even if there is a decently small queue of
99 transactions, we get that to be included one must have @ = 99%.

Well, we should not be disappointed by seeing only a slight improvement, because
two leaders are only slightly better than one. What happens when there are
many?

I didn’t explicitly write down the degeneracy formula for n miners selecting
one out of m transactions, but there is one. If we plug m transactions of value
F and a single transaction of value aF' into this formula, we get that the aF'
transaction has positive probability if

m n—1
a> | —— .
—\m+1

This is already much better! It might not seem like much, since there are typically
a lot more transactions (which could be in the thousands) compared with leaders
per block (which are, at best, in the low dozens). However, the thing is that this
expression decreases exponentially with n while being only linearly close to 1.

10

For example, if we consider again the case of m = 100 and now increase the
number of leaders from 2 to 10 we see that « significantly reduced from 99%
to... 91.4%. Wait... that’s still not very good either, is it? Of course, because
we are only limiting ourselves to one transaction per block! In fact, if n = 10
and m = 100 we are essentially considering a situation where the network is
congested ten times over!

Now, increasing ¢ is where things get really complicated, even for two miners and
uniform transactions. What causes the complication is the dependence between
events. Since a miner can include both the second and seventh transactions,
we have to take into account all possible overlaps with all other miners which
creates a terrible mess. However, one can prove that even through that mess if
all transactions pay a fee of F', a transaction with fee aF' has positive inclusion

chances if
£(n—1)
m
a> | —— .
m+1

This is looking much better. We can now compute the degeneracy not as a
function of the absolute number of transactions, but their fraction of the total
capacity. That is, we consider k - £ uniform transactions, If & = n we get that
the network is exactly in full capacity. If K = n/2 we get that we are at half
capacity, etc.

One can use the formula above to prove that if m = k - £, the bound on « is
approximately e~™/*. What does this mean?

If the network is exactly fully congested, that is k = n, we get a threshold of
about 1/e = 37% which is already a noticeable improvement, but that’s just the
worst casel If the network is only half congested, that is, kK = n/2, this becomes
1/€? ~ 13.5%! Even when the network is at twice the full capacity we get that
the threshold 1/4/e =~ 60%. Heck, even at ten times the throughput, we get the
bound 1/ ¥/e ~ 90% Compare this to Bitcoin, where once congestion hits, we
are at a round 0%.

General Case For Selecting One Transaction**

For completeness, I will provide the computation for a general number of miners
sampling one out of a general number of transactions m paying arbitrary fees
... F,.

For technical reasons, it will actually be more comfortable to talk about N + 1
miners. This will allow us to assume the point of view of one miner, and write
their profit in terms of what the other IV miners do.

The computation starts similarly. We ask ourselves, for the strategy (p1,...,0m),
what is the expected profit from Fj specifically for a particular miner.

First of all, the probability that the miner even selects F; is p;. If none of the
other miners selected Fj, which happens with probability (1 — p;)", then the

11

profit is F;. If exactly one miner also chose p;, then the expected profit is F;/2.
For each given miner, the probability that this miner selected F; while the rest
selected something else is p;(1 — p;)™. Since there are N ways to choose one of
the N miners, we get that the total probability of the event “exactly one other
miner selected F;” is N - (1 —p;)N¥ 1. We can extend this logic and say that the
probability that exactly j different miner selected Fj is given by (];[) pl(1—p)N—7

F;

and in this case the expected profit is g

We can encode all this into the function
N
1 /NY . N—j
S = — . 1— J
v =r 5 () a-»
and get that the expected profit for the strategy p1,...,pn is given by
m
F (1, pm) =D Fi-Sn (pi) -
i=1

If we try to proceed in the computation as is, we will run into notational inferno.
Instead, we first try to find a nicer expression for Sy. This is a bit delicate:

N
1 (N\d . —j
S&(p)zzm(j>dxpj+l (1—p)N !
§=0
Y

j=0 < 1-p
N
:JZO]L(JJV (11p(j+1)pj(1_p>N_j_11p(N+1)pj+1(1_p)n—j)

N

J+1\J

Jj=0

Il
—_
‘H
=
N
Lz
— N
N =
_
I
=
=z
S
!

The upshot is that Sy(x) is the unique solution to the separable differential

equation
, 1 n+1

LA i g

12

Ly (V-

A

GH+DP 1=+ = G+)P (1) - ﬁ (N +1)p (1 =p)

/

with respect to the boundary condition y(0) = 0 (where uniqueness follows
trivially by Picard’s theorem).

Solving this equation is direct, so I will leave it to the reader, but it follows that
the solution corresponding to these boundary conditions is

1—(1—2)N*!

Hence, the function we want to maximize is:

F (1, pm) =D FiSn (pi),
i=1

and we do it again by using Lagrange multipliers.

I will spare you the details, but tell you the result. First, we introduce the power

mean:
1 1/
Ma(Flv--me):<mZ$?) .
(You are welcome to check that M; and M_; are the arithmetic and harmonic
means respectively.)

By doing a computation very similar to the one we did for two miners, we find
that the optimal strategy is given by

vor | M_yynv—ny (Fry ooy F) m— 1
Fi m ’

pi=1-—

but to make this formula just a bit easier on the eyes, we return to the assumption
that the total number of miners is N and obtain the solution

71— N Mfl/N(Fla"'aFm)m_l
pi = 2 m

. The expected profit is then given by

m 1 N+1
M(A(Fl,,Fm)_(l—m> M—l/N(Flv"')Fm)>7

and the non-degeneracy condition is

1 N
F12<1—) M_l/N(Fl,...,Fm).
m

13

Degeneracy Reexamined**

Consider a situation where there are m — 1 transactions with a fee 1 and an mth
transaction with a fee F'. Clearly if F' = 1 then there are no degeneracies, how
low /high can F' be without creating degeneracies? We know that no degeneracies
exist for the case m = 2 so we will assume there are at least three transactions
in total.

One can easily compute that in this case, we have

M_yn (F1,... F) = (,711 <(m_ b+]\V}F)>N

so the non-degeneracy conditions become

AN
> <l_m> M_yn (F1, ..., Fp)

~(1-3) Gilm-vegm))

:F< %V/F(Tn_—ll)H)N'

Note that we only need to verify this holds for F; =1 and F; = F, as we assumed
all fees are one of these two. One can check that the non-degeneracy condition
we get by substituting F; = 1 always holds. This tells us that F' can be as high
as we want without creating a degeneracy. This is already surprising: if there
are at least two transactions, and they are all paying the same fee, then adding
one new transaction, no matter how astronomic it fee might be, cannot make
the other transactions degenerate. There is always motivation to leave some
probability for the lower paying transactions. This is not true if we add more
than one transaction though. Actually, it is not hard to show that if there are
mp > 1 transactions of value F', we obtain the condition

1 N
(1+7=) =P
mp—l

The non-degeneracy condition we get for F; = F' is easily shown to be
N
1
FZQ_)_
m—1

Again, we shift our perspective a bit to assume that there are m transactions
with fee 1, to which an additional, (m+ 1)th transaction with fee F' was added, to
obtain that the condition for the newly added transaction to be non-degenerate

is simply
I\ N
F20_>.
m

14

This is already much better than the single leader (single transaction case), where
if FF < 1 it instantly becomes degenerate, whereas if F' > 1 then it instantly
renders all other transactions degenerate. However, the lower bound seems to
approach 1 pretty fast. If

m << N

, then we get that F' is only allowed to be smaller than the average by a tiny
amount.

But here’s the thing: in the £ = 1 case, assuming m < NN is the same as assuming
that the network is extremely congested. Obviously, if there are a million times
more transactions paying a fee of 1 than the network can contain, there is no
reason to acknowledge any transaction paying a fee of 0.99. To get a true grasp
of how degeneracy plays out, we need to increase the throughput.

The accurate way to do that is to accurately solve the problem for miners with
larger blocks, which turns out extremely difficult. However, what if we instead
just increase the number of miners? More accurately, how inaccurate would it
be to consider a single miner selecting ¢ transactions to ¢ miners selecting one
transaction?

Recall that in our situation, all transactions but one pay the same fee, so we can
say that up to a very small fix (at least for reasonably large values of m), the
next transaction is selected uniformly. It is well known that if I sample uniformly
from m different options, then it would take approximately /m samples before
I sample the same thing twice, and below that threshold, this probability drops
sharply. In other words, if

ltm

, then uniformly sampling ¢ different transactions (which is what ¢ miners
selecting one transaction each do) and uniformly sampling ¢ different transactions
without repetition (which is what a single miner selecting ¢ transaction does) is
practically the same, up to a very small correction, whose magnitude is dominated
by the probability that two of the ¢ miners selected the same transaction.

A second observation is that the bound stays correct even for smaller values of
m, it just becomes loose. Setting F above the bound we are about to derive
will still assure non-degeneracy. It is just that we could have gone even lower
and still not become degenerate. Finding the precise non-degeneracy bound for
F when m is not much larger than ¢ (say, at most twice as large) seems very
difficult, and I assume this needs to be tackled numerically.

The bound is obviously given by

&N
1
pa (i)
m
which is still not terribly illuminating. It would benefit us to understand the

bound in terms of the congestion factor x = ;5. Substituting this into the
bound, we get the condition:

15

N
<11>
{-N-x
N2\ 1/
(et
{-N-x

s e—l/w

I stress again that this is an upper bound. It gets very accurate very fast and is
practically the correct answer for > 2, but it overshoots the required fee for
smaller values of z. Nevertheless, by inspecting the graph of the function e!/*
we find that even if the demand for the network is at double its capacity, and it
is filled with transactions that pay a fee of one dollar, you could get away with a
fee of 70 cents. At ten times its capacity, you could still get away with paying
less than 90 cents. When the network is exactly at capacity, this bound becomes
loose, yet it still tells us that we would need to pay at most 35 cents. For a
less-than-saturated network, this bound becomes increasingly over-estimating,
and other methods (probably numeric) are required.

Part IV »

If you find this content educational, interesting, or useful, please
consider supporting my work.

16

https://functor.network/user/912/entry/959
https://wybor.ski/support

	The Three Woes of Bitcoin’s Fee Market (and How BlockDAGs Can Fix Them) – Part III: BlockDAG Fee Markets
	Pure Fee Markets With Multiple Leaders
	Equilibria Analysis
	First Case
	Second Case

	Third Case
	General Case For Selecting One Transaction**
	Degeneracy Reexamined**

