
alpaca-lora: Experimenting with home-cooked
Large Language Model
written by Wei Zheng on Functor Network
original link: https://functor.network/user/90/entry/43

Wei, Oct 2023

A screen shot of failed/succeeded training runs.

Introduction
Large language models (LLM) became the buzzword in software development
since the release ChatGPT. Its ability to have natural conversation with humans
is just the tip of an iceberg. Enhanced with tools like LangChain or Semantic
Kernel, LLM has the potential to completely change how users interact with
software. In another word, LLM can create synergies among functionalities and
data sources, and provide a more efficient and intuitive user experience.

For example, many people are already using AI-based content creation tools for
their next viral videos. A typical video production pipeline includes scripting,
logistics, storyboarding, editing and marketing, just to name a few. To streamline
the process, a LLM could help content creators to do research while writing
scripts, purchase props for the shoot, generate storyboards based on the script
(might need stable diffusion for image generation), facilitate the editing process
and write eye-catching title/video descriptions for attracting views on social
media. LLM is the core that orchestrate all of these, but there could be several
concerns when incorporating LLM into a software product:

1. If I use OpenAI’s API, will I become too dependent on this service? What
if they bump up the price? What if they change service availability?

1

2. I don’t like how OpenAI censors contents or provides non-constructive
feedback on certain user inputs. (Or the other way around: I don’t like
how OpenAI censorship ignores certain things that are sensitive in my use
case.)

3. If my clients prefer private cloud or on-premises deployment, what Chat-
GPT alternatives do I have?

4. I just want to have control. I need to customize the LLM and I want it
cheap.

It is for these concerns, that I wonder if there could be an open-sourced equivalent
of OpenAI’s GPT models. Luckily, the wonderful open-source communities are
already sharing some very promising solutions. I decided to try out alpaca-lora,
a parameter-efficient fine-tuning method for training your own LLM. This blog
post discusses the process, the problems that I encountered, how I solved them
and what could happen next. If you also want to use the technique for training
your own LLM, I hope the information can help.

Let’s begin!

What is LLaMA, alpaca and LoRA?
LLaMA is a collection of foundation language models from Meta AI. These
autoregressive models have parameter count ranging from 7B to 65B, and they
can only be used for research purposes. Meta recently released LLaMA 2, which
can be used commercially with some limits. What makes the LLaMA model
family special is its training corpus and performance. Meta states that LLaMA
is trained on publicly available datasets. Its 13B variant achieves performance
comparable to GPT-3 (a 175B model) on most benchmarks.

alpaca is Stanford’s attempt to build an instruction following LLM based on
LLaMA. It works like this:

1. Ask a language model to generate instruction-input-response triplets.
2. Use the generated data for fine-tuning LLaMA.

After fine-tuning, LLaMA is able to follow user’s instruction and respond accord-
ingly. Here is a comparison between vanilla LLaMA’s response and fine-tuned
LLaMA response:

{
"instruction": "Answer user's question.",
"input": "Can you put a medium voltage circuit breaker in a low voltage switchgear? Why? Explain in detail.",

"vanilla LLaMA": {
"answer": "Yes, you can put a medium voltage circuit breaker in a low voltage switchgear. The medium voltage circuit breaker can be put in a low voltage switchgear because the medium voltage circuit breaker can be put in a low voltage switchgear because the medium voltage circuit breaker can be put in a low voltage switchgear because the medium voltage circuit breaker can be put....(repetition continues)"

},

"fine-tuned LLaMA": {
"answer": "No, it is not possible to put a medium voltage circuit breaker in a low voltage switchgear. This is because low voltage switchgear is designed to handle voltages up to 1 kV, while medium voltage switchgear is designed to handle voltages from 1 kV to 38 kV. The circuit breakers, contacts, and other components in low voltage switchgear are not suitable for the higher voltages and currents of medium voltage switchgear. Using a medium voltage circuit breaker in a low voltage switchgear could result in damage to the components and could pose a safety hazard."

2

https://github.com/tloen/alpaca-lora
https://arxiv.org/abs/2302.13971
https://huggingface.co/blog/llama2
https://github.com/tatsu-lab/stanford_alpaca

}
}

As you can see, fine-tuning changes LLM behavior quite drastically. The vanilla
model is stuck in a repetition loop. While the fine-tuned model did not yield
a 100% correct response, at least its answer is a resounding “No”. Fine-tuning
is a necessary step for producing usable LLM. In many cases, deploying an
open-sourced fine-tuned LLM is sufficient. But in some tailored business use
cases, it may be preferable to fine-tune models on domain-specific datasets.

Alpaca’s biggest drawback is its resource requirement. Its GitHub page states
that

Naively, fine-tuning a 7B model requires about 7 x 4 x 4 = 112 GB
of VRAM.

This is more VRAM than a A100 80GB GPU can handle. We can bypass the
VRAM requirement using LoRA. LoRA works like this:

1. Select some weights in a model, such as the query projection weight Wq in
a transformer model. Add (yes, arithmetic addition) adapter weights to
the selected weights.

2. Freeze the original model, only train the added weight.

The added weight has some special properties. Inspired by this paper, Edward
Hu et al. showed that for an original model weight Wo ∈ Rd×k, you can produce
a fine-tuned weight W ′

o = Wo + BA for downstream tasks, where B ∈ Rd×r

, A ∈ Rr×k and r ≪ min(d, k) is the “intrinsic rank” of the adapter weight.
It is important to set a proper r for the adapter weight, since a smaller r
lowers model performance, and a larger r increases adapter weight size without
proportional performance gain. This technique is similar to truncated SVD,
which approximates a matrix by decomposing it into several smaller matrices
and only keeping a few largest singular values. Assume Wo ∈ R100×100, a full
fine-tuning would change 10,000 parameters. LoRA fine-tuning with r = 8 would
decompose the fine-tuned weight into 2 parts, B ∈ R100×8 and A ∈ R8×100,
each part contains 800 parameters (1600 parameters in total.) The number of
trainable parameters is reduced 6.25 times.

After transforming the model with LoRA, we got a model that has only ~1%
trainable weights, yet its performance is greatly improved in certain domain.
This would allow us to train 7B or 13B models on more accessible hardware such
as RTX 4090 or V100.

The fine-tuning experiment
I ran the experiment on Huawei Cloud with a GPU accelerated VM instance
(p2s.2xlarge, 8vCPU, 64GB RAM, 1x V100 32GB VRAM.) It is known that
V100 does not support bfloat16 data type, and its tensor core does not support
int8 acceleration. These 2 limits can slow down mixed precision training and

3

https://arxiv.org/abs/2106.09685
https://arxiv.org/abs/2012.13255
https://huggingface.co/blog/hf-bitsandbytes-integration
https://github.com/Facico/Chinese-Vicuna/issues/39#issuecomment-1498449768
https://github.com/Facico/Chinese-Vicuna/issues/39#issuecomment-1498449768

cause numerical overflow during mixed precision training. We will keep this in
mind for later discussion.

Quickly scanning the source code

finetune.py and generate.py are the core of the project. The first script
fine-tunes LLaMA models, the second script uses the fine-tuned model to chat
with users. Let’s first take a look at the main flow of finetune.py:

1. loading a pretrained large foundation model

model = LlamaForCausalLM.from_pretrained(
base_model, # name of a huggingface compatible LLaMA model
load_in_8bit=True,
torch_dtype=torch.float16,
device_map=device_map,

)

2. load the model’s tokenizer

tokenizer = LlamaTokenizer.from_pretrained(base_model)
tokenizer.pad_token_id = (

0 # unk. we want this to be different from the eos token
)
tokenizer.padding_side = "left" # Allow batched inference

3. based on the training template, prepare model inputs with two functions,
tokenize and generate_and_tokenize_prompt.

4. create a LoRA adapted model using huggingface’s PEFT

config = LoraConfig(
r=lora_r, # the lora rank
lora_alpha=lora_alpha, # a weight scaling factor, think of it like learning rate
target_modules=lora_target_modules, # transformer modules to apply LoRA to
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",

)
model = get_peft_model(model, config)

5. create a trainer instance and start training

trainer = transformers.Trainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(

...

4

https://github.com/huggingface/peft

This is pretty simple. At the end, the script produces a model folder with
checkpoints, adapter weights and adapter configuration.

Next, let’s look at the main flow of generate.py:

1. load model and adapter weights

model = LlamaForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,

)
model = PeftModel.from_pretrained(

model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,

)

2. specify generation config

generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,

)

generate_params = {
"input_ids": input_ids,
"generation_config": generation_config,
"return_dict_in_generate": True,
"output_scores": True,
"max_new_tokens": max_new_tokens,

}

3. define functions for streaming and non-streaming generation mode:

if stream_output: # streaming
...

Without streaming
with torch.no_grad():

generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,

5

max_new_tokens=max_new_tokens,
)

s = generation_output.sequences[0]
output = tokenizer.decode(s)
yield prompter.get_response(output)

4. Start a Gradio server to test the model:

gr.Interface(
...

The first attempt

The project’s README.md stated that the following fine-tune settings produces
a LLaMA 7B with performance comparable to Stanford alpaca. An “official”
alpaca-lora weight was shared on huggingface.

python finetune.py \
--base_model='decapoda-research/llama-7b-hf' \
--num_epochs=10 \
--cutoff_len=512 \
--group_by_length \
--output_dir='./lora-alpaca' \
--lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \
--lora_r=16 \
--micro_batch_size=8

However, in my experience, it did not yield a usable model. Running it on a
V100 will encounter the following show-stopping issues:

1. loading the model with load_in_8bit causes data type error.
2. a binding script will cause PEFT to produce an invalid adapter. The

invalid adapter makes no change to the original LLaMA model and only
produces gibberish.

3. the decapoda-research/llama-7b-hf model apparently used the wrong
tokenizer. Its pad token, bos token and eos token are different from
LLaMA’s official tokenizer.

4. as previously mentioned, V100 lacks proper support for int8/fp16 mixed
training. This causes unexpected behaviors, such as training loss =
0.0 and eval loss = NaN.

After digging around and wasting numerous VM hours, I found the necessary
changes to make training work on a single V100.

...
do not use decapoda-research/llama-7b-hf as base_model. use a huggingface LLaMA model that was properly converted and has a correct tokenizer, e.g., yahma/llama-7b-hf or huggyllama/llama-7b.
decapoda-research/llama-7b-hf is likely to cause overflow/underflow on V100. train loss goes to 0 and eval loss becomes NaN. using yahma/llama-7b-hf or huggyllama/llama-7b somehow mitigates this issue
model = LlamaForCausalLM.from_pretrained(

base_model,

6

https://huggingface.co/tloen/alpaca-lora-7b/blob/main/README.md
https://huggingface.co/tloen/alpaca-lora-7b/blob/main/README.md

load_in_8bit=True, # only work for 7B LLaMA. On a V100, set True to save some VRAM at the cost of slower training; set False to speed up training at the cost of more VRAM / smaller micro batch size
torch_dtype=torch.float16,
device_map=device_map,

)
...
comment out the following line if load_in_8bit=False
model = prepare_model_for_int8_training(model)
...
set legacy=False to avoid unexpected tokenizer behavior. make sure no tokenizer warning was raised during tokenizer instantiation
tokenizer = LlamaTokenizer.from_pretrained(base_model, legacy=False)
...
the following binding script results in invalid adapter. simply comment them out
old_state_dict = model.state_dict
model.state_dict = (

lambda self, *_, **__: get_peft_model_state_dict(
self, old_state_dict()

)
).__get__(model, type(model))
...
if load_in_8bit=True, need to cast data type during training
with torch.autocast('cuda'):

trainer.train(resume_from_checkpoint=resume_from_checkpoint)

After making these changes, these training arguments produce a usable model.

{
"args": [

"--base_model",
"yahma/llama-7b-hf",
"--num_epochs=10",
"--data_path",
"yahma/alpaca-cleaned",
"--output_dir",
"./your output dir",
"--cutoff_len=512",
"--lora_target_modules=[q_proj,k_proj,v_proj,o_proj]",
"--lora_r=16",
"--micro_batch_size=2",
"--batch_size=16",
"--wandb_project",
"your wandb project name"

],
}

Note that the training script not only saves the “best” model (checkpoint with the
lowest eval loss), but also a couple checkpoints. I used wandb to log training/eval
losses for further analysis.

7

The first observation

I throw some random questions at the fine-tuned model. It produces some
reasonable response. Here is one example:

Instruction: Answer user’s question carefully.

Input: What happens when you rack out a switchgear circuit breaker
truck?

Response: When a switchgear circuit breaker truck is “racked out,” it
means that all of the circuit breakers in the truck have been opened
and the truck is in a non-energized state. This is typically done when
the truck is being serviced, repaired, or inspected. Once the circuit
breakers have been racked out, the truck is safe to work on and can
be re-energized once the necessary maintenance or repairs have been
completed.

This example queries the LLM’s internal knowledge. The model seemed to know
a lot about switchgears. However, when I tried to empirically test its reasoning
ability, it produced a very weird result:

Instruction:

Given the information below about a project, answer questions.
Chinese-Llama-2 project aims to enhance the understanding, genera-
tion, translation capabilities of the large language model Llama-2 in
Chinese language. With the application of methods such as LoRA
fine-tuning, full-parameter instruction fine-tuning, and secondary
pre-training, we cordially invite you to download and utilize the
associated datasets, training guides, and model parameters.

Input: What methods are used in this project?

Response: Chinese-Llama-2 project aims to enhance the understand-
ing, generation, translation capabilities of the large language model
Llama-2 in Chinese language. With the application of methods such
as LoRA fine-tuning, full-parameter instruction fine-tuning, and sec-
ondary pre-training, we cordially invite you to download and utilize
the associated datasets, training guides, and model parameters.

As you can see, the model likes to repeat the prompt. I call it prompt-repeater
model, and other developers had also been reporting this behavior in the repo
issues. Its ability to answer questions only gets better with more carefully
designed prompts. This behavior is not what we want in a production system,
as we cannot guarantee prompt effectiveness across different models. The
models have to be less sensitive to prompts. We want to somehow improve the
performance of this LLM.

In the next session, I will discuss what caused this problem and how to improve
fine-tuning result.

8

https://github.com/tloen/alpaca-lora/issues/524
https://github.com/tloen/alpaca-lora/issues/524

The second attempt and the (somewhat) success

Here are 3 things I tried to improve fine-tuning result:

1. Mask out loss on prompts (helps avoiding prompt repetition)
2. Turn off group-by-length option (helps improving performance, makes

loss curve look smoother)
3. Do not trust the eval loss curve. Use a checkpoint that has a lower training

loss, even though its eval loss could be higher than the “best” checkpoint.
(helps improving performance, since eval loss is not the best matrix here)

Let’s explain these 3 points one by one.

Mask out loss on prompts I was looking for the causes of prompt repetition
until I found this post and the official lora weights commit message. They
suggested that prompts should be excluded in loss calculation. Basically, you
don’t want to encourage the model to output prompt tokens. Masking out the
prompts during training would not encourage the model to repeat prompt tokens.
The chart below explains this: out of the 3 training runs, stoic-star-6 is the
only run that did not mask out prompts during training. Its training loss is thus
higher at the beginning. I suspect that if a) prompts are not masked out when
calculating loss, and b) training is insufficient, the model will be more likely to
repeat prompts rather than following instructions.

Figure 1: masked loss comparison

In the source code, loss masking is done by setting prompt tokens to -100:

Tokens with indices set to -100 are ignored (masked), the
loss is only computed for the tokens with labels in [0, ...,
config.vocab_size].

9

https://github.com/tloen/alpaca-lora/issues/478#issuecomment-1572052645
https://huggingface.co/tloen/alpaca-lora-7b/commit/28801eabf63a125cee9e46d8073fb13c7c8bd8b9
https://huggingface.co/docs/transformers/model_doc/llama

Turn off group-by-length option group-by-length option allows hugging-
face’s Trainer to group inputs of similar length into batches. This helps to
save VRAM usage when padding input sequences. However, it would greatly
reduce sample variance within a single batch. During the training process, we
generally prefer exposing the model to a variety of training samples. Setting
group-by-length to False reduces sample variation. It also causes loss fluctua-
tion during training (For example, two consecutive batches have padded lengths
of 10 and 50. The shorter batch has lower loss, and the longer batch has higher
loss. This results in an oscillating loss curve, as shown in the figure below).

On the other hand, since group-by-length reduces in-batch sample variation,
I suspect the model performance could also suffer from this. The figure below
compares training loss with or without group-by-length. It is clear that the
averaged loss is higher for run peach-violet-19, which has group-by-length
enabled.

Figure 2: group_by_length_comparison

Do not trust the eval loss curve I observed that training loss and eval loss
are diverged in all of my runs. Here is an example:

In this example, the optimum checkpoint occurs around epoch=2. If you load
the optimum checkpoint as suggested by the original repo, you are most likely
to get a prompt-repeater model as mentioned in the previous session.

By loading a model checkpoint near the end of training, I got a more performant
model. I asked the same question as before and the model returned the correct
answer:

Instruction:

Given the information below about a project, answer questions.

10

https://github.com/tloen/alpaca-lora

Figure 3: llm_eval vs train loss

Chinese-Llama-2 project aims to enhance the understanding, genera-
tion, translation capabilities of the large language model Llama-2 in
Chinese language. With the application of methods such as LoRA
fine-tuning, full-parameter instruction fine-tuning, and secondary
pre-training, we cordially invite you to download and utilize the
associated datasets, training guides, and model parameters.

Input: What methods are used in this project?

Response: The Chinese-Llama-2 project uses methods such as LoRA
fine-tuning, full-parameter instruction fine-tuning, and secondary
pre-training.

But judging by the evaluation loss, this model should perform worse. What
causes the dilemma?

I think evaluation loss is not a good matrix for measuring large language model
performance. LLaMA uses CrossEntropyLoss for training and evaluation loss:

modelling_llama.py from transformers library
...
forward function under LlamaForCausalLM class
if labels is not None:

Shift so that tokens < n predict n
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
Flatten the tokens
loss_fct = CrossEntropyLoss()
loss = loss_fct(shift_logits.view(-1, self.config.vocab_size), shift_labels.view(-1))

11

When testing on evaluation set, a model could produce the same answer with
different wording:

{
"evaluation prompt": "What is 1 + 3?"
"evaluation answer": "4."
"prediction answer": "The answer is 4."

}

Both answers are correct, but if the prediction answer is not an exact match
of the evaluation answer, evaluation loss will be high. In this case, we need a
better evaluation matrix to measure the model’s performance. We will worry
about proper evaluation later. For now, let’s assume the best model is the one
with the lowest training loss.

Going beyond 7B

I tried fine-tuning a 13B model on V100. While V100 can handle both int8 and
fp16 training on a 7B model, it simply cannot handle int8 training on 13B model.
If load_int_8bit = True, the 13B model will produce training_loss = 0.0.
We can use some debugging tools to understand why this happens (spoiler
alert: it is caused by overflow/underflow).

I used huggingface’s DebugUnderflowOverflow tool to inspect parameters during
training. In the first forward pass, it detected inf/nan values:

Figure 4: inf nan detected

More specifically, DebugUnderflowOverflow caught negative infinity values in
the 2nd input of LlamaDecoderLayer, as shown in the figure below. The
2nd input is attention_mask. I dived a bit deeper and found out that the
attention_mask is supposed to have very large negative values for padding
elements. Coincidentally, the negative infinity values are at the beginning of
every sequence. This observation leads me to believe that negative infinity values
are supposed to occur at this layer. Further investigation also showed that the
infinity values did not cause more infinity values in the next few layers. Therefore,
overflow at LlamaDecoderLayer is most likely not the root cause of abnormal
training loss.

Next, I inspected the outputs of each layer. It was very clear that the outputs
of the final layers are overflowing, as shown in the figure below. I believe that
this is caused by the limited precision of int-8 weights (or the limited range of
float16. It is likely that bfloat16 could avoid this problem).

12

Figure 5: inf decoder layer

Figure 6: layer output anomaly

13

To solve the overflow problem, I used float16 during training. V100 does not have
enough VRAM for training a 13B model unless some tricks were used. Hugging
Face DeepSpeed provides several methods, such as CPU offloading, to reduce
training VRAM usage. But the simplest trick is to enable gradient checkpointing
by calling model.gradient_checkpointing_enable() before training starts.

Gradient checkpointing trades off training speed for less VRAM usage. Typically,
during the forward pass, activations were computed and stored in memory for
use during backward pass. This takes up additional memory. However, with
gradient checkpointing, instead of storing activations during the forward pass,
they are re-calculated during backward pass, thus saving VRAM. Here is a nice
article about this technique.

I was able to train Llama 13B with float16 and gradient checkpointing enabled:

python finetune.py \
--base_model=yahma/llama-13b-hf \
--num_epochs=10 \
--output_dir 'your/output/dir' \
--lora_target_modules='[q_proj,k_proj,v_proj,o_proj]' \
--cutoff_len=1024 \
--lora_r=16 \
--micro_batch_size=4 \
--batch_size=128 \
--wandb_project 'alpaca_lora_13b' \
--train_on_inputs=False

The 13B model can handle some advanced tasks such as name entity recognition.
I use an example prompt for test and this is the 13B model’s accurate response:

All’s good! This is an exciting start. The model allows us to create complex
applications with LangChain.

At this point, we are still missing tools for automatic model evaluation. We
can use Language Model Evaluation Harness to evaluate our models on many
test cases, or even create our own test cases. It is the same tool that Hugging
Face uses for its Open LLM Leaderboard. While evaluation is a crucial aspect
of LLM development, this article focuses solely on the training process. I may
discuss evaluation in a future article.

Summary
In this article, we introduced the concept of large foundation models (LFMs) and
several fine-tuning methods that make LFMs behave as desired. We then focused
on LoRA, a parameter-efficient method for fine-tuning LFM, and explained the
fine-tuning code as well as performance improvement techniques. Finally, we
went a step further and successfully trained a Llama 13B model on a V100 GPU.
Although the 13B model training ran into some problems, we found that these
problems were imposed by hardware limitations and presented solutions. At the

14

https://huggingface.co/docs/transformers/main_classes/deepspeed
https://huggingface.co/docs/transformers/main_classes/deepspeed
https://residentmario.github.io/pytorch-training-performance-guide/gradient-checkpoints.html
https://sourajit16-02-93.medium.com/zero-shot-named-entity-recognition-using-openai-chatgpt-api-46738191f375
https://github.com/EleutherAI/lm-evaluation-harness

Figure 7: name entity recognition

end, we got a fine-tuned LLM that works, but we have not yet quantitatively
evaluated the LLM’s performance.

About the author
Hello there! My name is Wei. I am a dedicated problem solver, Senior AI
Specialist & Analytics project lead at ABB and machine learning Google Devel-
oper Expert. I hold an M.S. in Mechanical Engineering from the University of
Minnesota Twin Cities and a B.S. degree in Mechanical Engineering from the
University of Illinois at Urbana-Champaign.

My tech stack focus on python / C# programming, computer vision, machine
learning, algorithms, and micro-services, but I also have a wide span of inter-
ests such as game development (Unity), front/back-end development, technical
leadership, tinkering with single board computers and robotics.

I hope this article can help people in some way. Thanks for reading, and happy
problem-solving!

15

https://global.abb/group/en/about
https://developers.google.com/profile/u/WeiZheng
https://developers.google.com/profile/u/WeiZheng

	alpaca-lora: Experimenting with home-cooked Large Language Model
	Introduction
	What is LLaMA, alpaca and LoRA?
	The fine-tuning experiment
	Quickly scanning the source code
	The first attempt
	The first observation
	The second attempt and the (somewhat) success
	Going beyond 7B

	Summary
	About the author

