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Let (X, M, µ) be a σ-finite measure space; that is, X may be written as a
countable union of measurable sets of finite µ-measure. Let ν be another σ-finite
measure on (X, M). Further suppose that µ and ν are related to each other by
absolutely continuity; in particular, suppose µ and ν have the property that

ν(E) = 0 whenever µ(E) = 0 for all E ∈ M.

Should this relationship be true, we say that ν is absolutely continuous with
respect to µ, and we denote this by ν ≪ µ. The Radon-Nikodym Theorem
tells us that there exists a nonnegative measurable function f on X such that

ν(E) =
∫

E

f dµ for all E ∈ M., (1)

and that this function f is unique up to pointwise almost everywhere equivalence.

The Radon-Nikodym theorem is in the same “flavor” as the Riesz Representation
Theorem, in the sense that it suggests that certain abstract functions of interest
(in this case, measures) may possess a simpler concrete form (in this case,
integration of a fixed function over a measurable set).

My aim in this article is to prove this theorem through a deductive line of rea-
soning which still makes use of the arguments found in Royden and Fitzpatrick’s
Real Analysis textbook. I find that by rearranging the arguments in this way, one
may find a natural albeit indirect and long path towards our main result which
is usually obscured or discarded in favor of the compression and formalization of
a proof.

Insights on the recovery of f

Our first goal is to construct a candidate function f̂ which we could use as our
choice of f in (1). This may be a difficult task using only the abstract properties
of measure, so instead, let us try to get insights by tackling a modified form of
the problem at hand.

Let us assume that ν may indeed be written in the form in (1) for some
nonnegative measurable function f , but no other information concerning f is
known. Using only the values of ν, is there a way to reliably recover f? To
reduce the complexity of this problem, let us assume that ν(X) =

∫
X

f dµ < ∞.
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In essence, through ν, we only know what the integral of f is over arbitrary
measurable sets. With this in mind, let us forget ν for now and focus on f .
Information on the integrals of f is extremely useful, considering that there are
many results that allow us to conclude something about a function knowing
only its integrals. To wit, here is a simple example which is a consequence of
Chebychev’s inequality:

• If g is a measurable function on X, g is nonnegative on E ∈ M, and∫
E

g = 0, then g = 0 a.e. on E.

This rather simple and intuitive result leads to a very important corollary in the
context of our problem.

Corollary Let g1 be nonnegative and integrable on X. Let g2 be a nonnegative
measurable function on X. If

∫
E

g1 dµ ≥
∫

E
g2 dµ for any E ∈ M, then g1 ≥ g2

a.e. on X.

Proof. Since
∫

X
g2 dµ ≤

∫
X

g1 dµ < ∞, we conclude g1 and g2 are finite a.e. on
X hence g1 − g2 is well-defined and

∫
E

g2 dµ < ∞ for any E ∈ M.

By way of contradiction, assume g1 < g2 on some measurable set E′ satisfying
µ(E′) > 0. As a consequence,

∫
E′ g1 dµ ≤

∫
E′ g2 dµ. From the conditions of the

proposition, we conclude
∫

E′ g1 dµ =
∫

E′ g2 dµ, or
∫

E′ g2 − g1 dµ = 0. Hence,
g2 − g1 = 0 a.e. on E′; a contradiction.

By the monotonicity of integration, the converse of the above corollary holds.
Thus, we have found a characterization for when a nonnegative integrable
function on X dominates another nonnegative measurable function a.e. on X
using integrals. With this in mind, let us consider the set

F = {g : X → [0, ∞] | g measurable , g ≤ f a.e. on X}

=
{

g : X → [0, ∞]
∣∣∣∣∣ g measurable ,

∫
E

g ≤ ν(E) =
∫

E

f for E ∈ M

}
(2)

We recall that
∫

X
f is the supremum of all nonnegative simple functions which

f dominates (possibly a.e.) on X. It is not too difficult to show that
∫

X
f

also coincides with the supremum of the integrals of nonnegative measurable
functions over X which f dominates (possibly a.e) on X. Therefore,

sup
g∈F

∫
X

g =
∫

X

f.

As a consequence, we can find a sequence {gn}∞
n=1 of functions in F such that

{
∫

X
gn dµ} →

∫
X

f dµ. If, perchance, the sequence converges pointwise to some
function g on X, then we might be getting closer to our goal.
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Indeed, since f dominates each function in {gn} a.e. on X, we expect g ≤ f or
f − g ≥ 0 a.e. on X. Further, if by some coincidence we find that

∫
X

g dµ =
limn→∞

∫
X

gn dµ =
∫

X
f dµ, then

∫
X

f − g dµ = 0. By applying the “simple
example” earlier to f − g, we conclude f − g = 0 a.e. on X! Thus f is recovered
through g. QED.

. . . But of course, we cannot guarantee such a string of coincidences. So instead,
let us construct a sequence that would satisfy our desired properties using {gn}∞

n=1
as our building blocks. For each n ∈ N, let us define f̂n = max{g1, g2, . . . , gn}.
By construction, {f̂n} is increasing, so by the Monotone Convergence Theorem
it converges pointwise to some nonnegative measurable function f̂ on X. In
addition,

∫
X

f̂ = lim
n→∞

∫
X

f̂n.

Now, for n ∈ N, we know that the functions g1, . . . , gn are each dominated a.e.
on X by f . As a consequence, we expect f̂n = max{g1, . . . , gn} to be dominated
a.e. on X by f as well, i.e., f̂n ≤ f a.e. on X. Therefore, the pointwise limit
f̂ of {fn} must be dominated a.e. on X by f , i.e., f̂n ≤ f a.e. on X. By the
monotonocity of integration,

∫
X

f̂ dµ ≤
∫

X
f dµ.

In addition, since f̂n ≥ gn by our construction of fn, we find that

∫
X

f̂ dµ = lim
n→∞

f̂n dµ ≥ lim
n→∞

gn =
∫

X

f dµ.

We could thus conclude that
∫

X
f̂ dµ =

∫
X

f dµ. Now, recall that f̂ ≤ f a.e.
on X. By applying our earlier mentioned “simple result” to f − f̂ on X, we
conclude that f − f̂ = 0 a.e. on X. That is, f̂ = f a.e. on X.

We have now recovered f ! To summarize, here are the main steps which we
employed:

1. Consider the set

F =
{

g : X → [0, ∞] | g measurable,

∫
E

g dµ ≤
∫

E

f dµ for E ∈ M
}

and get a sequence {gn} in F such that∫
X

gn dµ → sup
g∈F

∫
X

g dµ =
∫

X

f dµ.

2. From {gn}, construct a new sequence {f̂n} where f̂n = max{g1, . . . , gn}.
Let f̂ be the pointwise limit function of this sequence which is guaranteed
to exist by the Monotone Convergence Theorem.
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3. Show that f̂ ≤ f a.e. on X and that
∫

X
f̂ =

∫
X

f , thereby conclude that
f̂ = f a.e. on X.

We have thus found a procedure to get f using only its integrals. Using this
as our guide, in the next article, we shall replace the integration of f with the
evaluation of an arbitrary measure, and see which among the steps above could
be retained or modified in order to prove the Radon-Nikodym theorem.
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