## Guide to Royden and Fitzpatrick's Real Analysis: The Radon-Nikodym Theorem (Part 1)

written by Peter Burgos on Functor Network original link: https://functor.network/user/897/entry/385

Let  $(X, \mathcal{M}, \mu)$  be a  $\sigma$ -finite measure space; that is, X may be written as a countable union of measurable sets of finite  $\mu$ -measure. Let  $\nu$  be another  $\sigma$ -finite measure on  $(X, \mathcal{M})$ . Further suppose that  $\mu$  and  $\nu$  are related to each other by **absolutely continuity**; in particular, suppose  $\mu$  and  $\nu$  have the property that

$$\nu(E) = 0$$
 whenever  $\mu(E) = 0$  for all  $E \in \mathcal{M}$ .

Should this relationship be true, we say that  $\nu$  is **absolutely continuous** with respect to  $\mu$ , and we denote this by  $\nu \ll \mu$ . The **Radon-Nikodym Theorem** tells us that there exists a nonnegative measurable function f on X such that

$$\nu(E) = \int_{E} f \, d\mu \text{ for all } E \in \mathcal{M}., \tag{1}$$

and that this function f is unique up to pointwise almost everywhere equivalence.

The Radon-Nikodym theorem is in the same "flavor" as the Riesz Representation Theorem, in the sense that it suggests that certain abstract functions of interest (in this case, measures) may possess a simpler concrete form (in this case, integration of a fixed function over a measurable set).

My aim in this article is to prove this theorem through a deductive line of reasoning which still makes use of the arguments found in Royden and Fitzpatrick's Real Analysis textbook. I find that by rearranging the arguments in this way, one may find a natural albeit indirect and long path towards our main result which is usually obscured or discarded in favor of the compression and formalization of a proof.

## Insights on the recovery of f

Our first goal is to construct a candidate function  $\hat{f}$  which we could use as our choice of f in (1). This may be a difficult task using only the abstract properties of measure, so instead, let us try to get insights by tackling a modified form of the problem at hand.

Let us assume that  $\nu$  may indeed be written in the form in (1) for some nonnegative measurable function f, but no other information concerning f is known. Using only the values of  $\nu$ , is there a way to reliably recover f? To reduce the complexity of this problem, let us assume that  $\nu(X) = \int_X f \, d\mu < \infty$ .

In essence, through  $\nu$ , we only know what the integral of f is over arbitrary measurable sets. With this in mind, let us forget  $\nu$  for now and focus on f. Information on the integrals of f is extremely useful, considering that there are many results that allow us to conclude something about a function knowing only its integrals. To wit, here is a simple example which is a consequence of Chebychev's inequality:

• If g is a measurable function on X, g is nonnegative on  $E \in \mathcal{M}$ , and  $\int_E g = 0$ , then g = 0 a.e. on E.

This rather simple and intuitive result leads to a very important corollary in the context of our problem.

Corollary Let  $g_1$  be nonnegative and integrable on X. Let  $g_2$  be a nonnegative measurable function on X. If  $\int_E g_1 d\mu \ge \int_E g_2 d\mu$  for any  $E \in \mathcal{M}$ , then  $g_1 \ge g_2$  a.e. on X.

*Proof.* Since  $\int_X g_2 d\mu \leq \int_X g_1 d\mu < \infty$ , we conclude  $g_1$  and  $g_2$  are finite a.e. on X hence  $g_1 - g_2$  is well-defined and  $\int_E g_2 d\mu < \infty$  for any  $E \in \mathcal{M}$ .

By way of contradiction, assume  $g_1 < g_2$  on some measurable set E' satisfying  $\mu(E') > 0$ . As a consequence,  $\int_{E'} g_1 d\mu \le \int_{E'} g_2 d\mu$ . From the conditions of the proposition, we conclude  $\int_{E'} g_1 d\mu = \int_{E'} g_2 d\mu$ , or  $\int_{E'} g_2 - g_1 d\mu = 0$ . Hence,  $g_2 - g_1 = 0$  a.e. on E'; a contradiction.

By the monotonicity of integration, the converse of the above corollary holds. Thus, we have found a characterization for when a nonnegative integrable function on X dominates another nonnegative measurable function a.e. on X using integrals. With this in mind, let us consider the set

$$\mathcal{F} = \{g : X \to [0, \infty] \mid g \text{ measurable }, g \leq f \text{ a.e. on } X\}$$

$$= \left\{g : X \to [0, \infty] \mid g \text{ measurable }, \int_E g \leq \nu(E) = \int_E f \text{ for } E \in \mathcal{M} \right\} \quad (2)$$

We recall that  $\int_X f$  is the supremum of all nonnegative simple functions which f dominates (possibly a.e.) on X. It is not too difficult to show that  $\int_X f$  also coincides with the supremum of the integrals of nonnegative measurable functions over X which f dominates (possibly a.e.) on X. Therefore,

$$\sup_{g \in \mathcal{F}} \int_X g = \int_X f.$$

As a consequence, we can find a sequence  $\{g_n\}_{n=1}^{\infty}$  of functions in  $\mathcal{F}$  such that  $\{\int_X g_n d\mu\} \to \int_X f d\mu$ . If, perchance, the sequence converges pointwise to some function g on X, then we might be getting closer to our goal.

Indeed, since f dominates each function in  $\{g_n\}$  a.e. on X, we expect  $g \leq f$  or  $f-g \geq 0$  a.e. on X. Further, if by some coincidence we find that  $\int_X g \, d\mu = \lim_{n \to \infty} \int_X g_n \, d\mu = \int_X f \, d\mu$ , then  $\int_X f - g \, d\mu = 0$ . By applying the "simple example" earlier to f-g, we conclude f-g=0 a.e. on X! Thus f is recovered through g. QED.

... But of course, we cannot guarantee such a string of coincidences. So instead, let us construct a sequence that would satisfy our desired properties using  $\{g_n\}_{n=1}^{\infty}$  as our building blocks. For each  $n \in \mathbb{N}$ , let us define  $\hat{f}_n = \max\{g_1, g_2, \ldots, g_n\}$ . By construction,  $\{\hat{f}_n\}$  is increasing, so by the Monotone Convergence Theorem it converges pointwise to some nonnegative measurable function  $\hat{f}$  on X. In addition,

$$\int_{X} \hat{f} = \lim_{n \to \infty} \int_{X} \hat{f}_{n}.$$

Now, for  $n \in \mathbb{N}$ , we know that the functions  $g_1, \ldots, g_n$  are each dominated a.e. on X by f. As a consequence, we expect  $\hat{f}_n = \max\{g_1, \ldots, g_n\}$  to be dominated a.e. on X by f as well, i.e.,  $\hat{f}_n \leq f$  a.e. on X. Therefore, the pointwise limit  $\hat{f}$  of  $\{f_n\}$  must be dominated a.e. on X by f, i.e.,  $\hat{f}_n \leq f$  a.e. on X. By the monotonocity of integration,  $\int_X \hat{f} \, d\mu \leq \int_X f \, d\mu$ .

In addition, since  $\hat{f}_n \geq g_n$  by our construction of  $f_n$ , we find that

$$\int_{X} \hat{f} d\mu = \lim_{n \to \infty} \hat{f}_n d\mu \ge \lim_{n \to \infty} g_n = \int_{X} f d\mu.$$

We could thus conclude that  $\int_X \hat{f} d\mu = \int_X f d\mu$ . Now, recall that  $\hat{f} \leq f$  a.e. on X. By applying our earlier mentioned "simple result" to  $f - \hat{f}$  on X, we conclude that  $f - \hat{f} = 0$  a.e. on X. That is,  $\hat{f} = f$  a.e. on X.

We have now recovered f! To summarize, here are the main steps which we employed:

1. Consider the set

$$\mathcal{F} = \left\{ g : X \to [0, \infty] \mid g \text{ measurable}, \int_E g \, d\mu \le \int_E f \, d\mu \text{ for } E \in \mathcal{M} \right\}$$

and get a sequence  $\{g_n\}$  in  $\mathcal{F}$  such that

$$\int_X g_n \, d\mu \to \sup_{g \in \mathcal{F}} \int_X g \, d\mu = \int_X f \, d\mu.$$

2. From  $\{g_n\}$ , construct a new sequence  $\{\hat{f}_n\}$  where  $\hat{f}_n = \max\{g_1, \ldots, g_n\}$ . Let  $\hat{f}$  be the pointwise limit function of this sequence which is guaranteed to exist by the Monotone Convergence Theorem.

3. Show that  $\hat{f} \leq f$  a.e. on X and that  $\int_X \hat{f} = \int_X f$ , thereby conclude that  $\hat{f} = f$  a.e. on X.

We have thus found a procedure to get f using only its integrals. Using this as our guide, in the next article, we shall replace the integration of f with the evaluation of an arbitrary measure, and see which among the steps above could be retained or modified in order to prove the Radon-Nikodym theorem.