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To understand where the definitions of schemes even come from, we must
first study classical algebraic geometry. The set-up is as follows:

Let k be a an algebraically closed field. This means that if f ∈ k[x] is a
polynomial, every root of f is already in k. This is an important condition for
technical reasons (Intuitively, since we are interested in zero sets of polynomials,
we do not want ’missing information’ in the form of missing would-be vanishing
points). Algebraic Geometry originated with the study of polynomials over the
complex numbers.

We consider kn, i.e. n-tuples of elements of k. We can think of multivari-
ate polynomials f ∈ k[x1, . . . , xn] as functions f : kn → k by plugging in an
n-tuple of elements of k into the variables of f .

We want to study sets which are ”carved out” by multivariate polynomials.
For example, the polynomial equation x2+y2 = 1, or, rewritten x2+y2−1 = 0
defines a circle over the real numbers (I know I said we are working with alge-
braically closed fields, but it is much easier to picture the real numbers).

More generally, we define an affine algebraic set (Also called an affine vari-
ety), which will be our objects of interest as follows:

Definition: Let S ⊆ k[x1, . . . , xn] be a set of polynomials, define the set V (S) ⊆
kn, the algebraic set defined by S via

{x ∈ kn : f(x) = 0, ∀f ∈ S} (1)

Note that for a point x ∈ V (S), if f, g ∈ S then f(x) + g(x) = (f + g)(x) = 0,
and if h ∈ k[x1, . . . , xn] then h(x)f(x) = 0. This closure under addition and
absorption tells us that we can pass to ideals, i.e. if ⟨S⟩ is the ideal generated by
S (i.e. the smallest ideal containing it) then V (S) = V (⟨S⟩). This will hopefully
allow us to draw algebraic information from the geometric information of the
algebraic set. We can refine this further, but we will wait until later to do so.
For now, we define the Zariski Topology:

Definition: The Zariski Topology on kn is defined by declaring the algebraic
sets as the closed sets. Verify for yourself that the following holds:

1. If I1, . . . , In are ideals, then
⋃n

j=1 V (Ij) = V (
∏n

j=1 Ij) so these sets are
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closed under finite unions.

2. If {Ij}j is a family of ideals, then V (
∑

j Ij) =
⋂

j V (Ij), so these sets are
closed under aribtrary intersections.

3. V (0) = kn and V (k[x1, . . . , xn]) = ∅ (Since no point, not even 0 vanishes
on constant nonzero polynomials).

So the algebraic sets have the exact properties of closed sets in a topological
space. If you’ve never seen this, it might be weird to think as a topology as
being defined by its closed sets, but since closed and open sets are just comple-
ments of each other, declaring the closed sets is the same as declaring the open
sets (And the properties they have to satisfy are dual).

Moreover, the Zariski Topology is quite weird. For example, it is almost never
Hausdorff (In fact, a lot open sets are dense in closed sets! If X is closed and
irreducible, i.e. not the union of two smaller closed sets, then every nomepty
open subset of X in the subspace topology is dense, so every two nonempty
open sets intersect nontrivially). Nonetheless, it is useful for reasoning about
varieties, and among other things, gives the correct notion of ’dimension’.

We now give an open basis for the topology:

Let 0 ̸= f ∈ k[x1, . . . , xn], and let D(f) = {x ∈ kn : f(x) ̸= 0} i.e. the set
of all points on which f is nonzero. Note that this is the complement of V (⟨f⟩),
i.e. the set of all points on which f is 0, hence it is open. Now, this is a basis
for the Zariski topology, since if I is an ideal defining a closed set V (I), then
consider the union

⋃
f∈I D(f). Convnice yourselves that V (I)c =

⋃
f∈I D(f),

since a point isn’t in the zero locus of I iff it doesn’t vanish under one of the
polynomials of I, so D(f) are a basis for the Zariski Topology.

Note that we can also go the other way, i.e. we can talk about ideals that
are determined by subsets of kn:

Let S ⊆ kn, then the ideal defined by S is

I(S) = {f ∈ k[x1, . . . , xn] : f(x) = 0, ∀x ∈ S} (2)

This is dual to the previous definition. Verify for yourselves that this is an
ideal. Now the natural question is what is V (I(S))? It turns out that this is
the smallest algebraic set containing S:

Theorem: S = V (I(S)), i.e. the smallest closed set in the Zariski Topology
containing S is V (I(S)).

Proof. An equivalent characterisation of the closure is the intersection of all
closed sets containing S, hence by definition S ⊆ V (I(S). Converesly, let
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x ∈ V (I(S)). We shall prove that x is in S. Concretely, this means that
every polynomial that vanishes on S vanishes on x as well (x cannot be ’sepa-
rated’ from S by polynomials).

Indeed, let f be a polynomial that vanishes on S, then f ∈ I(S), but x ∈
V (I(S)), hence f(x) = 0, simple as that we have V (I(S)) = S.

In particular, if we start with an algebraic set X = V (J), then V (I(X)) =
X = V (I(V (J))). It is now natural to ask what is I(V (J)) for an ideal J , in
order to be able to characterise the family of ideals for which ,I(V (J)) = J (i.e.
ideals coming from Algebraic subsets), and establish a correspondence between
algebraic sets (Which we restrict to because they give V (I(X)) = X) and these
ideals

{Algebraic Sets} = {X ⊆ kn : V (I(X)) = X}
↔
{I ⊴ k[x1, . . . , xn] : I(V (I)) = I}
X 7→ I(X), I 7→ V (I)

Note that this correspondence is also order reversing, if X ⊆ Y then I(X) ⊇
I(Y ) (It is easier to vanish on less points) and if I ⊆ J then V (J) ⊇ V (I) (It is
easier to a vanishing point of less polynomials).

The previous theorem showed that V is a left inverse to I on algebraic sets.
It turns out that we need to restrict our attention to a more specific type of
ideal. In particular, suppose that I(X) is the ideal of an algebraic set. Suppose
that f is a polynomial such that fn ∈ I(X), then fn(x) = 0 for all x ∈ X, but
fn(x) = 0 if and only if f(x) = 0 (Here we mean we are taking the polynomial
to the n-th power), hence f ∈ I(X) as well.

Such ideals are called Radical Ideals, and the wonderful Hilbert’s Nullstellensatz
tells us that this is the exact property that characterises the ideals of variaties.
It is also important in giving us the motivation for schemes:

Theorem: (Hilbert’s Nullstellensatz): Let I ⊴ k[x1, . . . , xn] be an ideal, then

I(V (I)) =
√
I = {f : ∃n ∈ N, fn ∈ I} (3)

Although the proof is quite nice, we skip it here for brevity, we are only skimming
this story after all, and even so there is still so much to do and define! As a
corollary, we get that there is a bijective correspondence given by V and I
between algebraic sets and Radical ideals, since

√
I = I for a radical ideal.

Note that if S ⊂ kn, then I(S) = I(V (I(S)) = I(S) by the Nullstellensatz,
since I(S) is radical (the proof given for I(X) for X an algebraic set works for
a general subset S as well), so ideals do not distinguish between algebraic sets
and their closures, just like algebraic sets don’t distinguish between subsets and
the (radical) ideals generated by them.
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Moreover, it gives us the following important corollary:

Corollary: The maximal ideals of k[x1, . . . , xn] are in bijective correspondence
to points a = (a1, . . . , an) ∈ kn, in particular ma = (x1 − a1, . . . , xn − an), and
a = V (ma)

Proof. First, let a ∈ kn. Note that x1 − a1, . . . , xn − an ∈ I(a), hence (x1 −
a1, . . . , xn − an) ⊆ I(a). Conversely, if f ∈ I(a), then note that f(a) = 0, but
this means that in the quotient k[x1, . . . , xn]/(x1 − a1, . . . , xn − an) we have
f̄(x) = f̄(a) = (f(a)) = 0, so f ∈ (x1 − a1, . . . , xn − an). It is possible to see
this in more concrete ways as well: we can define f(x1 + a1, . . . , xn + an) =∑

i1,...,in
ci1,...,inx

i1
1 · · ·xin

n . Now we have

f(x1, · · · , xn) =
∑

i1,...,in

ci1,...,in(x1 − a1)
i1 · · · (xn − an)

in (4)

Now if we just show that c0,...,0 = 0, then every other term will be in (x1 −
a1, . . . , xn−an), hence we will have f ∈ (x1−a1, . . . , xn−an). Indeed, we have
c0,...,0 = f(a1, . . . , an) = 0 as all other terms vanish and f ∈ I(a) by assump-
tion, hence f ∈ (x1 − a1, . . . , xn − an).

Now, suppose that we have a, b ∈ kn with ma = mb, then for every 1 ≤ i ≤ n,
we have xi−ai ∈ mb, hence bi−ai = 0, so ai = bi for all 1 ≤ i ≤ n, hence a = b.
This shows injectivity of the correspondence

Finally, we show surjectivity: Let m be a maximal ideal, then V (m) is nonempty
(By the Nullstellensatz, otherwise we would have m = k[x1, . . . , xn]). Let
a ∈ V (m), then I(a) = ma ⊇ I(V (m)) = m (Here we are using the order-
reversing property + the Nullstellensatz), hence by maximality m = ma. This
shows that the ideal (x1−a1, . . . , xn−an) = ma is indeed maximal, completing
the proof.

This lays the ground for classical algebraic geometry, but keep in mind there
is a whole world of theory that we have not discussed and will not be getting
into. Just keep in mind that there are a lot of powerful theorems and techniques.

This correspondence between maximal ideals (purely algebraic) and points (geo-
metric) gives a natural idea of how to generalise the powerful techniques of clas-
sical algebraic geometry and use them to study arbitrary commutative rings:
Just substitute maximal ideals for points, and follow the geometry (Define a
Zariski Topology on the sets of maximal ideals so that it acts as in the clas-
sical case, in particular it should make k[x1, . . . , xn] homeomorphic to kn via
the identification of maximal ideals and points). We shall explore this method
and see if it holds up next time. In particular, we give some more motivation
through coordinate rings.
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