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Theorem 1. Let R be a ring and let R[z] denote the set of all sequences of
elements of R, (ag,a1,---), such that a; = 0 for all but finitely many indices.

(i) R[z] is a ring with addition and multiplication defined by
(ao, a1, )+ (bo, b1, ) = (ag + bo,a1 +by,---)

(ag,ar,---)(bo,b1,--+) = (co,c1,--+)

where ¢, = Y i An—ib;.

(ii) If R is commutative [resp. a ring with identity, ring with no zero divisors,
integral domain/, so is R[z].

(i1i) The map R — R[z| given by r — (1,0,0,-- ) is a monomorphism of rings.

The ring R[z] is called the ring of polynomials over R.

Theorem 2. Let R be a ring with identity and denote by x the element (0,1x,0,0,0,---) €
Rz].

(i) 2™ =(0,0,---,0,1R,0,---) where 1g is the (n + 1)th coordinate.

(i) If r € R, ra™ = a"r = (0,---,0,7,0,---) where r is the (n + 1)th coordi-
nate.

(iii) For every nonzero polynomial f € R[zx], In € N, elements ag, a1, - ,a, €
R such that f = apz® + a1z + -+ + apz™. The elements n and a; are
unique in the sense that f = box® + bix! + -+ + b,a™ implies m > n,
a; =b; fori € {0,1,--- ,n} and b; =0 for n < i < m.

If R has an identity, 2° = 1x and we write polynomials as f = ag + ayz +
asx? + cdots + an,x™. If R is a ring without identity, embed R to a ring S
with identity. Identify R with its image under the embedding map so that R
is a subring of S. Then R[x] is a subring of S[x]. Thus every polynomial f =
(ag,a1,--+) € R[z] can be written uniquely as f = ag + a1z + agz? + - - - + a,a™
where a; € R,a, # 0, z = (0,15,0,0,---) € S[z]. If f =Y " a2z’ € R[z],
the elements a; € R are called the coefficients of f. The element ag is called
the constant term. Elements of R which have the form r = (r,0,0,---) are
called constant polynomials. If f = Y7  a;z* and a, # 0, then a,, is called the
leading coefficient of f. If R has an identity and f has leading coefficient 1,
then f is said to be a monic polynomial.

Let R be a ring with identity. The element z = (0,1x,0,0,---) of R[z] is
called an indeterminate. If S is another ring with identity, the indeterminate
x € S[z] is not the same element as x € R[x]. We can also define polynomials
in more than one indeterminate.



Theorem 3. Let R be a ring and denote by R[x1, za, - - , T,] the set of functions
f:N" = R such that f(u) # 0 for at most a finite number of elements u of N™.

(i) Rlx1,x2, - ,xy,] is a ring with addition and multiplication defined by
(f+9)w) = fu) +g(u), (fo)w)= D [flv)g(w)
vt+w=u
where f,g € R[x1,22, - ,x,] and u € N™.

(i) If R is commutative [resp. ring with identity, ring without zero divisors,
integral domain], so is R[x1,xa, - ,xy].

(ii) The map R — Rxy,2za, - ,zy] : v — fr where f-(0,0,---,0) = r and
fr(w) =0 for allu e N™\ {(0,0,---,0)} is a monomorphism of rings.

The ring R[x1,xa, - , ] is called the ring of polynomials in n determinates
over R. Ris considered a subring of R[z1, z2,- - ,x,]. Let n be a positive integer
and for i € {1,2,--- ,n}, let ¢, = (0,---,0,1,0,---,0) € N™ where 1 is the ith
coordinate of ¢;. Every element of N® may be written as kie; + koo +- - -+ kp€n.

Theorem 4. Let R be a ring with identity and n a positive integer. Vi €
{1,2,--- ,n}, let x; € R[x1, 22, - ,xy] be defined by x;(¢;) = 1 and z;(u) =0
for u # €.

(i) Vk € N, 2F(ke;) = 1r and ¥ (u) = 0 for u # ke;.

(ii) V(k1, ko, ky) € N (zh b2 o ake)(kie) + koeg + - -+ kpen) = 1 and
arake gk (u) =0 for u # kie 4 koeg + - - + kpep.

(i) Vt,s € N,Vi,j € {1,2,--- ,n},alet = xia}

(iv) Vr € R,t € N, zlr = ra!

(v) ¥Vf € Rlz1,x2, -+ ,x,] there exists unique elements ak, k... k, € R in-
dexed by all (k1,ka, -+, kn) € N® and nonzero for at most a finite number
of (ki,ka, -+ kn) € N such that f =3 ag, k. o, TH0a52 - ghn,

If R is a ring with identity, the elements 1, xo, - - - , x, are called indetermi-
nates. The elements ay, k,.... k, are called coeflicients of the polynomial f. A
polynomial of the form az? 52 - .- zF» is called a monomial. The notation and
terminology is extended to polynomial rings where R has no identity. Embed
the ring R to a ring S with identity and consider R[z1,x2, - , %] as a subring of
Slz1, 2, - ,x,]. If Ris any ring, for any subset {i1, i, - ,ix} C {1,2, - ,n},
the monomorphism R[x;,, Zi,, -+ , %4, ] = Rlx1, 22, -+, x,] exists.

Let ¢ : R — S be a homomorphism of rings, f € R[x1,za, -+ ,Zp], S1,82,  ,8n €
S. Let f=3",aah - akin. Let

n

d)f(sla 82,7, Sn) = Z ¢(ai)811§“812%2 T s’rcLi” €S

=0



Theorem 5. Let R and S be commutative rings with identity and ¢ : R — S a
homomorphism of rings such that ¢(1g) = 1s. If $1, 82, , 8, € S, then there
is a unique homomorphism of rings ¢ : R[x1,xa, -+ ,x,] — S such that ¢ |r= ¢
and ¢(z;) = s; fori € {1,2,--- ,n}. This property determines the polynomial

ring R[z1,za, -+ ,x,] up to isomorphism.

Proof. If f € R[z1,x2,-++ , ), then f =Y aixlf“xg'““ ---gFin - The map ¢
given by o¢(f) = &f(s1,82, - ,8n) is a well-defined map such that ¢ |p= ¢
and ¢(x;) = s;. It is easy to verify that ¢ is a homomorphism. Suppose that
¥ ¢ Rlxy1,x2, -+ ,x,] — S is a homomorphism with ¢ |g= ¢, ¥(z;) = s;.
Then ¥(f) = ¢(f) by direct computation. Define a category ¥ whose objects
are tuples (¢, K, $1,82, -+ ,8,) where K is a commutative ring with identity,
S1,82,"++ ,8n € K, ¥ : R — K a homomorphism with ¢(1g) = 1x. A mor-
phism in € from (¢, K, s1, -+ ,8,) to (6,T,t1,ta, - ,t,) is a homomorphism
¢ : K — T such that {(1x) = 17, (ot = 0 and ((s;) = t;. Verify that ¢ is an

equivalence in ¢ iff ¢ is an equivalence of rings. If ¢ : R — R[x1, o, -+ ,xy] is
the inclusion map, (¢, R[x1, 22, ,&yn], 21, ,Z,) is a universal object in %.
Thus R[z1, 22, - ,x,] is completely determined up to isomorphism. O

Corollary 1. If ¢ : R — S is a homomorphism of commutative rings and
81,82, 8p € S then the map R[xy, 29, ,x,] = S given by f — ¢f(s1, - ,5n)
18 a homomorphism of rings.

Proof. The proof that f — ¢f(s1,82, - ,8n) is & homomorphism does not rely
on R containing an identity. O
The map R[x1, 2, ,x,] — S is called the evaluation homomorphism. The

corollary may be false when R and S are not commutative.

Corollary 2. Let R be a commutative ring with identity and n a positive integer.
Vk € {1,2,--- ,n}, there are isomorphisms of rings R[x1,x2, -, x|[Tp+1, -, Tnl
R[l'l»an e 7xn] = R[$k+1, T 7mn][x17x27 e ,mk}'

~J

Proof. Given a homomorphism ¢ : R — S of commutative rings with identity, el-

ements s1, 82, , 5, € S, there exists a homomorphism ¢ : Rlxy, 29, -+ x5 —
S such that ¢ |r= ¢, ¢(z;) = s;. Applying the theorem with Rz, z2,--- ,z}] in
place of R gives ¢ : R[x1, 22, -+ ,ok)[Ths1, -+ ,7n] — S such that ¢ |[g= ¢ and
é(x;) = s; for all i € {1,2,--- ,n}. Due to the uniqueness up to isomorphism,
Rlzy, @9, -+ ,xp][Tgs1, -+, Tn] = Rlx1, T2, - ,x,]. The other isomorphism fol-
lows similarly. O

Theorem 6. Let R be a ring and denote R[[z]] the set of all sequences of
elements in R.

(i) R[[z]] is a ring with addition and multiplication defined in the same way
as the operations for R[z].

(ii) R[z] is a subring of R][[x]].



(i5i) If R is commutative (resp. ring with identity, no zero divisors, integral
domain), then so is R[[z]].

The ring R[[z]] is called the ring of formal power series over the ring R. Its
elements are called power series.

Theorem 7. Let R be a ring with identity and f = ;o a;x’ € R[[z]].
(i) f is a unit in R[[z]] iff its constant term ag is a unit in R.

(i) If ag is irreducible in R, then f is irreducible in R[[z]].

Proof. (i). If 3g € R[[z]],g = >, bz’ such that fg = gf = 1g, it follows
immediately that agby = bgpag = 1g. Whence ag is a unit. Suppose ag is a unit
in R. If 3g € R[[z]],g = Y, biz" such that fg = 1g, then

aobo = lR
agby +a1bg =0

aobn + albn,1 + -+ anbo =0

Conversely, if a solution (bg,by,---) exists for this system of equations in R,
then g = Y00, bz’ € R[[z]] satisfies fg = 1g. Take by = ay ", by = ag ' (—a1bo).
Similarly, b, = —aal(albn_l + -+ 4+ apbg). Thus the system of equations is
solvable. A similar argument shows the existence of a left inverse for f in R[[z]].
(ii) is an immediate consequence of (i). O

Corollary 3. If R is a division ring, the units in R[[x]] are precisely those power
series with nonzero constant terms. The principal ideal (x) consists precisely of
the nonunits in R[[z]] and is the unique mazimal ideal of R[[x]]. Thus if R is a
field, R[[z]] is a local ring.

The degree of a nonzero monomial ax’flx];Q ooxkn € Rlwy, g, -+, xp] is the
nonnegative integer ki + ko + - - + k. If f is a nonzero polynomial, the degree
of f is the maximum of the degrees of the monomials making up f. The degree
of f is denoted deg f. A polynomial which is a sum of monomials, each with the
same degree k, is said to be homogeneous of degree k. The degree of f in zy is
the degree of f considered as a polynomial in one indeterminate z over the ring
Rlz1, @2, ,Xp—1,Tkt+1, " ,Tn]. We define the degree of the zero polynomial
to be —o0.

Theorem 8. Let R be a ring and f,g € R[x1, T2, ,Tp].
(i) deg(f + g) < max{deg f,degg}
(i) deg(fg) < deg f +degg



(i1i) If R has no zero dwisors, deg(fg) = deg f + degyg.

(iv) If n =1 and the leading coefficient of f or g is not a zero divisor in R,
deg(fg) = deg f + degg.

Theorem 9 (Division Algorithm). Let R be a ring with identity and f,g € R|x]
nonzero polynomials such that the leading coefficient of g is a unit in R. Then
there exist unique polynomials q,r € R[x] such that f = gg+r and degr < deg g.

Proof. Ifdegg > deg f,let g =0andr = f. Ifdegg < deg f, f =Y i ja;z’,g =
Sy bzt with a,, # 0,b,, # 0,m < n, by, a unit in R. Proceed by induction
onn. Ifn=0,m=0and ¢y = aobo_l, r = 0. Assume the existence is true for
polynomials with degree less than n. The polynomial a,,b,,'2"~™g has degree n
and leading coefficient a,,. Hence f —a,b,,'2"~™g is a polynomial of degree less
than n. There exist polynomials ¢’,r such that f — a,b,la""™g = ¢'g + r and
degr < degg. Thus if ¢ = a,bla" ™ + ¢, f = qg+r. For uniqueness, suppose
f=qg+r1=qag+r, degry < degg and degrs < degg. q1g+7r1 = q29 + 72
implies (¢1 — g2)g = 192 — r1. Since the leading coefficient of g is a unit,

deg(q1 — q2) +degg = deg(ra — 1)

Since deg(ro — r1) < degg, the above inequality is true only if ¢ = ¢2 and
ry=7rs. O

Corollary 4 (Remainder Theorem). Let R be a ring with identity and f € R[x].
Ve € R,3lq € Rlz] such that f(z) = q(z)(x —c) + f(c)

Corollary 5. If F is a field, then the polynomial F[z] is a Euclidean domain.
The units in Fx] are precisely the nonzero constant polynomials.

Proof. Since F is an integral domain, F[z] is an integral domain. Define ¢ :
F[z]\ {0} — N by ¢(f) = deg f. By the division algorithm, F'[z] is a Euclidean
domain. Since each unit in F[z] must have degree 0, the units of F[z]| are
precisely the nonzero constant polynomials. O

Definition 1. Let R be a subring of a commutative ring S, ¢y, ca, cdots,c, € S
and f = S aikitak? ke € Ry o, 2] a polynomial such that
fler,ca, ) =0. Then (c1,¢a,- -+ ,¢p) is said to be a root or zero of f.

Theorem 10. Let R be a commutative ring with identity and f € R[x]. Then
c€ Ris aroot of fiffc —c]| f.

Proof. f(z) =q(x)(x —¢c)+ f(c). If z —c| f(x), then h(z)(z —¢) = ¢(x)(z —
¢) + f(c) for h € R[z]. Whence (h(x) — q(x))(x — ¢) = f(c). Thus substituting
x =cgives f(c) =0. If f(c) =0, f(z) = q(x)(z — ¢). O

Theorem 11. If D is an integral domain contained in an integral domain E
and f € Dlx] has degree n, then f has at most n distinct roots in E.



Proof. Let c¢1,¢a,c3,- - be the distinct roots of f in E. f(z) = q1(z)(x — ¢1)
whence 0 = f(c2) = q1(c2)(ca — ¢1). Since ¢1 # ¢ and E is an integral domain,
q1(ce) = 0. Thus f(z) = go2(x)(x — ¢2)(x — ¢1). An inductive argument shows
for distinct roots ¢1,co, ++ ,Cm,y gm = (¥ — c1)(x — ¢2) -+ (x — ¢,) divides f.
But deg g,,, = m. Thus m < n. O

Theorem 12. Let D be a unique factorization domain with quotient field F
and let f =" ja;x' € D[z]. Ifu=c/d € F with ¢ and d relatively prime, u
is a oot of f, then ¢ | ap and d | ay,.

Proof. f(u) = 0implies that agd™ = ¢(327_, (—a;)c 1" ), —anc® = (30— dd* = 1)d.

If (¢,d) = 1p, then ¢ | ag and d | ay,. O

Let D be an integral domain and f € Dlz]. If ¢ € D and ¢ is a root of f,
then there is a greatest integer m such that f(z) = (z —¢)™g(x) where g € D|[z]
and x — ¢t g(z). The integer m is called the multiplicity of the root ¢ of f. If
¢ has multiplicity 1, c is said to be a simple root. If ¢ has multiplicity greater
than 1, ¢ is called a multiple root.

Lemma 1. Let D be an integral domain and f = > . a;x* € Dlz]. Let
f" € D[] be the polynomial f' =Y, _, kaxa*~1. ThenVf,g € D[z],c € D:

(i) (cf) = cf’

(i) (f+9) =f+d
(iii) (fg9)' = f'9+['g
(i) (9") =ng" g’

The polynomial f’ is called the formal derivative of f.

Theorem 13. Let D be an integral domain and a subring of integral domain
E. Let f € Djx] and c€ E.

(i) ¢ is a multiple root of f iff f(c) =0 and f'(c) = 0.

(i) If D is a field and f is relatively prime to f', then f has no multiple roots
m .

(i1i) If D is a field, f is irreducible in D[x] and E contains a root of f, then f
has no multiple roots in E iff f' # 0.
Proof. (i). f(z) = (x — ¢)™g(x) where g(c) # 0.
f'(@) = m(z — )" lg(x) + (x — )¢ (x)

If m > 1, then f’(¢) = 0. Conversely, if f(c) = 0, then m > 1.If m = 1, then
f'(x) = g(z) + (z — ¢)¢’(x). Thus f'(¢) = 0 means f/'(c) = g(c) which is a
contradiction. Therefore m > 1.



(ii). Since D[x] is a Euclidean domain, 3k, h € D[z] such that kf + hf = 1p.
If ¢ is a multiple root of f, then 1p = k(c)f(c) + h(c)f'(c) = 0, a contradiction.
Thus c is a simple root.

(iii). If f is irreducible and f’ # 0, then f and f’ are relatively prime since
deg f’ < deg f. Therefore, f has no multiple roots in E. Conversely, suppose
f has no multiple roots in E and b is a root of f in E. If f/ = 0, then b is a
multiple root of f, a contradiction. Hence f’ # 0. O

Let D be an integral domain, the following facts hold:

1. The units of D[z] are precisely the constant polynomials that are units in
D.

2. If ¢ € D and c is irreducible in D, ¢ is irreducible in D[z].

3. Every first degree polynomial whose leading coefficient is a unit in D is
irreducible in D[z]. In particular, every first degree polynomial over a field
is irreducible.

4. Suppose D is a subring of integral domain F and f € D[z]. Then f may
be irreducible in E[x] but not in D|z] and vice versa.

For the last point, note that 2x + 2 is irreducible in Q[z] but not in Z[x]. 22+ 1
is irreducible in R[z] but not in Clz].

Let D be a unique factorization domain and f = > a;x" a nonzero poly-
nomial in D[z]. A greatest common divisor of ag, a1, - ,ay is called a content
of f and is denoted C(f). Write b &~ ¢ whenever b and ¢ are associates in
D. Then = is an equivalence relation on D. Since D is an integral domain,
b~c¢ < 3Ju€ D,b=cuanduisaunit. Ifa € Dand f € D[z] then
Claf) ~ aC(f). If f € D[z] and C(f) is a unit in D, then f is said to be
primitive. For any polynomial g € D[z], g = C(g)g1 with g1 primitive.

Lemma 2. If D is a unique factorization domain and f,g € D[x], then C(fg) =~
C(f)C(g). The product of primitive polynomials is primitive.

Proof. Let f = C(f)f1,9 = C(9)¢q1, f1,91 primitive. It suffices to prove that
f1g1 is primitive. Let f; = Z?:o a;z' and g; = Z;nzo bjzl. figr = ;n;on crak
with ¢ = ZHj:k aib;. If fig: is not primitive, there exists an irreducible
element p € R such that Vk,p | ¢,. Since C(f1) is a unit, p t C(f1) whence there
is a least integer s such that p | a; for i < s and p t as. Similarly, there is a least

integer ¢ such that p | b; for j <t and ptb,. Since p divides csy, and
Cott = Qpbsy¢ + -+ as_1bpy1 + asby +asy1bi_1 + -+ asqibo
p | asby implying p | as or p | by, a contradiction. O

Lemma 3. Let D be a unique factorization domain with quotient field F and
let f and g be primitive polynomials in D[z|. Then f and g are associates in
Dlx] iff they are associates in F[z].



Proof. If f and g are associates in F[z], f = gu for some u € F[z] a unit.
u € F so u = b/c where b,c € D,c # 0. Thus ¢f = bg. Since C(f),C(g) are
units in D, ¢ = C(cf) = C(bg) ~ b. Thus Jv € D a unit such that b = cv.
cf = bg = cvg. Thus f = vg whence f and g are associates in D[x]. The
converse is obvious. O

Lemma 4. Let D be a UFD with quotient field F and f a primitive polynomial
of positive degree in D[z]. Then f is irreducible in Dlx] iff f is irreducible in

Proof. Suppose f is irreducible in D[z] and f = gh with g,h € Flz], degg >
Lidegh > 1. g =31 ((ai/bi)a’ and h = 37" ((c;/dj)a! with a;,bi,c;,d; € D

and b; # 0,d; # 0. Let b = bob by - - - by, and for each i let b] = boby - - - bj—1bjy1 - -

If gy = Y1y abiz’ € Dlz], then g1 = ags with a = C(g1),92 € D[z] and go
primitive. g = (1p/b)g1 = (a/b)g2 and degg = deg go. Similarly, h = (¢/d)hs
with ¢,d € D, hs € D[z], hy primitive and degh = degha. f = (a/b)(c/d)gahe
thus bdf = acgahs implying bd =~ ac. Jv € D a unit such that bd = acv.
acgohe = acvf = gohs = vf so f = gahe. Then f is reducible in Dlz], a
contradiction. Thus f is irreducible in F[z]. Conversely, if f is irreducible in
F[z], f = gh with g,h € Dlx], then one of them, say ¢ is a constant. Thus
C(f) =~ gC(h). Since f is primitive, g is a unit in D and hence in D[z]. Thus
f is irreducible in D|z]. O

Theorem 14. If D is a UFD, so is D[x1, 22, -+, Tp].

>~

Proof. We only need to prove D[x] is UFD since D[x1, 23, , 2] = D[z, 22, -
If f has positive degree, f = C(f)f1 with fi primitive and positive degree. Since
D is a UFD, C(f) is a unit or C(f) = cica- - ¢y with each ¢; irreducible in
D and hence in D[z]. Let F' be the quotient field of F. Since F[z] is a UFD
containing D(z], fi = pip5---p}, with each p} an irreducible polynomial in
Flz]. For each i, pf = (a;/b;)p; with a;,b; € D, b; # 0, p; € Dlz], p; prim-
itive. Each p; is irreducible in F[z] whence each p; is irreducible in D[z]. If
a = ai1ag - an, b =biby by, f1 = (a/b)p1ps - pn. Thus bf; = apips - pp.

Since f1,p1,P2, - ,Pn are primitive, a and b are associates in D. Thus a/b = u,
with w a unit in D. Thus if C(f) is a nonunit, f = wucica- - cpp1p2 - Pn.
Remove ¢y, ¢z, , ¢y if C(f) is a unit.

For uniqueness, suppose f is a nonprimitive polynomial in D[z] of positive
degree. Any factorization of f as a product of irreducible elements may be writ-
tenas f = cico - cmpip2 - - - Pn With each ¢; irreducible in D, each p; irreducible
and hence primitive in D|z] of positive degree. Suppose f = dy---drq1 -+ qs
where d; irreducible in D, g¢; irreducible in D[z] of positive degree. Then
c1cy -+ ¢y and dy ---d, are associates in D. Unique factorization in D im-
plies m = r and after reindexing, ¢; is an associate of d;. p1ps - - - p,, is associate
t0 q1g2 -+ - gs in D[x]. Since F[z] is a UFD, n = s and each p; is associate of g;
in F[z] after reindexing. They are associates in D[z]| by the lemma. O

Theorem 15 (Eisenstein’s Criterion). Let D be a UDF with quotient field F'.
If f =" ya;x’ € Dlz], deg f > 1 and p is an irreducible element of D such

,xn,l][xn].



that p{ an, p | a; fori € {0,1,2,--- ,n — 1}, p* { ag, then f is irreducible in
Flz]. If f is primitive, then f is irreducible in D|x].

Proof. f = C(f)f1, fi primitive in D[z], C(f) € D. Since C(f) is a unit in
F, it suffices to show f; is irreducible in F[z]. We only need to prove f; is
irreducible in D[z]. Suppose f; = gh with

g=bx"+---+by€D[z], degg=r>1

h=csz®’+---+co€D[z], degh=s>1

*

Since p t C(f), p has the same divisibility conditions to a}, the coefficients of
f1, as it does to a;. Since p | af = boco, either p | by or p | ¢o, say p | bg. Since
p? 1 ag, ptco. Some coefficient by, of g is not divisible by p otherwise f; would
not be primitive. Let &k be the least integer such that p | b; for ¢ < k and p 1 bg.
Then 1 < k <7r < n. Since

ay, = bock + bicg—1 + -+ br_1c1 + brco

and p | a}, p | breo whence p | by, or p | co, a contradiction. Thus f; must be
irreducible in D[z]. O



