Polynomial rings

written by Night Shift in Math on Functor Network original link: https://functor.network/user/854/entry/417

Theorem 1. Let R be a ring and let R[x] denote the set of all sequences of elements of R, (a_0, a_1, \dots) , such that $a_i = 0$ for all but finitely many indices.

(i) R[x] is a ring with addition and multiplication defined by

$$(a_0, a_1, \cdots) + (b_0, b_1, \cdots) = (a_0 + b_0, a_1 + b_1, \cdots)$$

 $(a_0, a_1, \cdots)(b_0, b_1, \cdots) = (c_0, c_1, \cdots)$

where $c_n = \sum_{i=0}^n a_{n-i}b_i$.

- (ii) If R is commutative [resp. a ring with identity, ring with no zero divisors, integral domain], so is R[x].
- (iii) The map $R \to R[x]$ given by $r \mapsto (r, 0, 0, \cdots)$ is a monomorphism of rings.

The ring R[x] is called the ring of polynomials over R.

Theorem 2. Let R be a ring with identity and denote by x the element $(0, 1_R, 0, 0, 0, \cdots) \in R[x]$.

- (i) $x^n = (0,0,\cdots,0,1_R,0,\cdots)$ where 1_R is the (n+1)th coordinate.
- (ii) If $r \in R$, $rx^n = x^n r = (0, \dots, 0, r, 0, \dots)$ where r is the (n+1)th coordinate.
- (iii) For every nonzero polynomial $f \in R[x]$, $\exists n \in \mathbb{N}$, elements $a_0, a_1, \dots, a_n \in R$ such that $f = a_0x^0 + a_1x^1 + \dots + a_nx^n$. The elements n and a_i are unique in the sense that $f = b_0x^0 + b_1x^1 + \dots + b_mx^m$ implies $m \ge n$, $a_i = b_i$ for $i \in \{0, 1, \dots, n\}$ and $b_i = 0$ for $n < i \le m$.

If R has an identity, $x^0=1_R$ and we write polynomials as $f=a_0+a_1x+a_2x^2+cdots+a_nx^n$. If R is a ring without identity, embed R to a ring S with identity. Identify R with its image under the embedding map so that R is a subring of S. Then R[x] is a subring of S[x]. Thus every polynomial $f=(a_0,a_1,\cdots)\in R[x]$ can be written uniquely as $f=a_0+a_1x+a_2x^2+\cdots+a_nx^n$ where $a_i\in R, a_n\neq 0, \ x=(0,1_S,0,0,\cdots)\in S[x]$. If $f=\sum_{i=0}^n a_ix^i\in R[x]$, the elements $a_i\in R$ are called the coefficients of f. The element a_0 is called the constant term. Elements of R which have the form $r=(r,0,0,\cdots)$ are called constant polynomials. If $f=\sum_{i=0}^n a_ix^i$ and $a_n\neq 0$, then a_n is called the leading coefficient of f. If R has an identity and f has leading coefficient 1_R , then f is said to be a monic polynomial.

Let R be a ring with identity. The element $x=(0,1_R,0,0,\cdots)$ of R[x] is called an indeterminate. If S is another ring with identity, the indeterminate $x \in S[x]$ is not the same element as $x \in R[x]$. We can also define polynomials in more than one indeterminate.

Theorem 3. Let R be a ring and denote by $R[x_1, x_2, \dots, x_n]$ the set of functions $f: \mathbb{N}^n \to R$ such that $f(u) \neq 0$ for at most a finite number of elements u of \mathbb{N}^n .

(i) $R[x_1, x_2, \dots, x_n]$ is a ring with addition and multiplication defined by

$$(f+g)(u) = f(u) + g(u), \quad (fg)(u) = \sum_{v+w=u} f(v)g(w)$$

where $f, g \in R[x_1, x_2, \cdots, x_n]$ and $u \in \mathbb{N}^n$.

- (ii) If R is commutative [resp. ring with identity, ring without zero divisors, integral domain], so is $R[x_1, x_2, \dots, x_n]$.
- (iii) The map $R \to R[x_1, x_2, \dots, x_n] : r \mapsto f_r$ where $f_r(0, 0, \dots, 0) = r$ and $f_r(u) = 0$ for all $u \in \mathbb{N}^n \setminus \{(0, 0, \dots, 0)\}$ is a monomorphism of rings.

The ring $R[x_1, x_2, \dots, x_n]$ is called the ring of polynomials in n determinates over R. R is considered a subring of $R[x_1, x_2, \dots, x_n]$. Let n be a positive integer and for $i \in \{1, 2, \dots, n\}$, let $\epsilon_i = (0, \dots, 0, 1, 0, \dots, 0) \in \mathbb{N}^n$ where 1 is the ith coordinate of ϵ_i . Every element of \mathbb{N}^n may be written as $k_1\epsilon_1 + k_2\epsilon_2 + \dots + k_n\epsilon_n$.

Theorem 4. Let R be a ring with identity and n a positive integer. $\forall i \in \{1, 2, \dots, n\}$, let $x_i \in R[x_1, x_2, \dots, x_n]$ be defined by $x_i(\epsilon_i) = 1_R$ and $x_i(u) = 0$ for $u \neq \epsilon_i$.

- (i) $\forall k \in \mathbb{N}, x_i^k(k\epsilon_i) = 1_R \text{ and } x_i^k(u) = 0 \text{ for } u \neq k\epsilon_i.$
- (ii) $\forall (k_1, k_2, \dots, k_n) \in \mathbb{N}^n, (x_1^{k_1} x_2^{k_2} \dots x_n^{k_n})(k_1 \epsilon_1 + k_2 \epsilon_2 + \dots + k_n \epsilon_n) = 1_R \text{ and } x_1^{k_1} x_2^{k_2} \dots x_n^{k_n}(u) = 0 \text{ for } u \neq k_1 \epsilon_1 + k_2 \epsilon_2 + \dots + k_n \epsilon_n.$
- (iii) $\forall t, s \in \mathbb{N}, \forall i, j \in \{1, 2, \dots, n\}, x_i^t x_i^s = x_i^s x_i^t$
- (iv) $\forall r \in R, t \in \mathbb{N}, x_i^t r = r x_i^t$
- (v) $\forall f \in R[x_1, x_2, \cdots, x_n]$ there exists unique elements $a_{k_1, k_2, \cdots, k_n} \in R$ indexed by all $(k_1, k_2, \cdots, k_n) \in \mathbb{N}^n$ and nonzero for at most a finite number of $(k_1, k_2, \cdots, k_n) \in \mathbb{N}^n$ such that $f = \sum a_{k_1, k_2, \cdots, k_n} x_1^{k_1} x_2^{k_2} \cdots x_n^{k_n}$.

If R is a ring with identity, the elements x_1, x_2, \cdots, x_n are called indeterminates. The elements $a_{k_1, k_2, \cdots, k_n}$ are called coefficients of the polynomial f. A polynomial of the form $ax_1^{k_1}x_2^{k_2}\cdots x_n^{k_n}$ is called a monomial. The notation and terminology is extended to polynomial rings where R has no identity. Embed the ring R to a ring S with identity and consider $R[x_1, x_2, \cdots, x_n]$ as a subring of $S[x_1, x_2, \cdots, x_n]$. If R is any ring, for any subset $\{i_1, i_2, \cdots, i_k\} \subseteq \{1, 2, \cdots, n\}$, the monomorphism $R[x_{i_1}, x_{i_2}, \cdots, x_{i_k}] \to R[x_1, x_2, \cdots, x_n]$ exists.

Let $\phi: R \to S$ be a homomorphism of rings, $f \in R[x_1, x_2, \cdots, x_n], s_1, s_2, \cdots, s_n \in S$. Let $f = \sum_{i=0}^m a_i x_1^{k_{i1}} \cdots x_n^{k_{in}}$. Let

$$\phi f(s_1, s_2, \dots, s_n) = \sum_{i=0}^n \phi(a_i) s_1^{k_{i1}} s_2^{k_{i2}} \dots s_n^{k_{in}} \in S$$

Theorem 5. Let R and S be commutative rings with identity and $\phi: R \to S$ a homomorphism of rings such that $\phi(1_R) = 1_S$. If $s_1, s_2, \dots, s_n \in S$, then there is a unique homomorphism of rings $\bar{\phi}: R[x_1, x_2, \dots, x_n] \to S$ such that $\bar{\phi} \mid_R = \phi$ and $\bar{\phi}(x_i) = s_i$ for $i \in \{1, 2, \dots, n\}$. This property determines the polynomial ring $R[x_1, x_2, \dots, x_n]$ up to isomorphism.

Proof. If $f \in R[x_1, x_2, \cdots, x_n]$, then $f = \sum_{i=0}^m a_i x_1^{k_{i1}} x_2^{k_{i2}} \cdots x_n^{k_{in}}$. The map $\bar{\phi}$ given by $\bar{\phi}(f) = \phi f(s_1, s_2, \cdots, s_n)$ is a well-defined map such that $\bar{\phi} \mid_{R} = \phi$ and $\bar{\phi}(x_i) = s_i$. It is easy to verify that $\bar{\phi}$ is a homomorphism. Suppose that $\psi : R[x_1, x_2, \cdots, x_n] \to S$ is a homomorphism with $\psi \mid_{R} = \phi$, $\psi(x_i) = s_i$. Then $\psi(f) = \bar{\phi}(f)$ by direct computation. Define a category $\mathscr E$ whose objects are tuples $(\psi, K, s_1, s_2, \cdots, s_n)$ where K is a commutative ring with identity, $s_1, s_2, \cdots, s_n \in K$, $\psi : R \to K$ a homomorphism with $\psi(1_R) = 1_K$. A morphism in $\mathscr E$ from $(\psi, K, s_1, \cdots, s_n)$ to $(\theta, T, t_1, t_2, \cdots, t_n)$ is a homomorphism $\zeta : K \to T$ such that $\zeta(1_K) = 1_T$, $\zeta \circ \psi = \theta$ and $\zeta(s_i) = t_i$. Verify that ζ is an equivalence in $\mathscr E$ iff ζ is an equivalence of rings. If $\iota : R \to R[x_1, x_2, \cdots, x_n]$ is the inclusion map, $(\iota, R[x_1, x_2, \cdots, x_n], x_1, \cdots, x_n)$ is a universal object in $\mathscr E$. Thus $R[x_1, x_2, \cdots, x_n]$ is completely determined up to isomorphism.

Corollary 1. If $\phi: R \to S$ is a homomorphism of commutative rings and $s_1, s_2, \dots s_n \in S$ then the map $R[x_1, x_2, \dots, x_n] \to S$ given by $f \mapsto \phi f(s_1, \dots, s_n)$ is a homomorphism of rings.

Proof. The proof that $f \mapsto \phi f(s_1, s_2, \dots, s_n)$ is a homomorphism does not rely on R containing an identity.

The map $R[x_1, x_2, \dots, x_n] \to S$ is called the evaluation homomorphism. The corollary may be false when R and S are not commutative.

Corollary 2. Let R be a commutative ring with identity and n a positive integer. $\forall k \in \{1, 2, \dots, n\}$, there are isomorphisms of rings $R[x_1, x_2, \dots, x_k][x_{k+1}, \dots, x_n] \cong R[x_1, x_2, \dots, x_n] \cong R[x_1, x_2, \dots, x_k]$.

Proof. Given a homomorphism $\phi: R \to S$ of commutative rings with identity, elements $s_1, s_2, \cdots, s_n \in S$, there exists a homomorphism $\bar{\phi}: R[x_1, x_2, \cdots, x_k] \to S$ such that $\bar{\phi} \mid_{R} = \phi, \bar{\phi}(x_i) = s_i$. Applying the theorem with $R[x_1, x_2, \cdots, x_k]$ in place of R gives $\bar{\phi}: R[x_1, x_2, \cdots, x_k][x_{k+1}, \cdots, x_n] \to S$ such that $\bar{\phi} \mid_{R} = \phi$ and $\bar{\phi}(x_i) = s_i$ for all $i \in \{1, 2, \cdots, n\}$. Due to the uniqueness up to isomorphism, $R[x_1, x_2, \cdots, x_k][x_{k+1}, \cdots, x_n] \cong R[x_1, x_2, \cdots, x_n]$. The other isomorphism follows similarly.

Theorem 6. Let R be a ring and denote R[[x]] the set of all sequences of elements in R.

- (i) R[[x]] is a ring with addition and multiplication defined in the same way as the operations for R[x].
- (ii) R[x] is a subring of R[[x]].

(iii) If R is commutative (resp. ring with identity, no zero divisors, integral domain), then so is R[[x]].

The ring R[[x]] is called the ring of formal power series over the ring R. Its elements are called power series.

Theorem 7. Let R be a ring with identity and $f = \sum_{i=0}^{\infty} a_i x^i \in R[[x]]$.

- (i) f is a unit in R[[x]] iff its constant term a_0 is a unit in R.
- (ii) If a_0 is irreducible in R, then f is irreducible in R[[x]].

Proof. (i). If $\exists g \in R[[x]], g = \sum_i b_i x^i$ such that $fg = gf = 1_R$, it follows immediately that $a_0b_0 = b_0a_0 = 1_R$. Whence a_0 is a unit. Suppose a_0 is a unit in R. If $\exists g \in R[[x]], g = \sum_i b_i x^i$ such that $fg = 1_R$, then

$$a_{0}b_{0} = 1_{R}$$

$$a_{0}b_{1} + a_{1}b_{0} = 0$$

$$\vdots$$

$$a_{0}b_{n} + a_{1}b_{n-1} + \dots + a_{n}b_{0} = 0$$

$$\vdots$$

Conversely, if a solution (b_0, b_1, \cdots) exists for this system of equations in R, then $g = \sum_{i=0}^{\infty} b_i x^i \in R[[x]]$ satisfies $fg = 1_R$. Take $b_0 = a_0^{-1}, b_1 = a_0^{-1}(-a_1b_0)$. Similarly, $b_n = -a_0^{-1}(a_1b_{n-1} + \cdots + a_nb_0)$. Thus the system of equations is solvable. A similar argument shows the existence of a left inverse for f in R[[x]]. (ii) is an immediate consequence of (i).

Corollary 3. If R is a division ring, the units in R[[x]] are precisely those power series with nonzero constant terms. The principal ideal (x) consists precisely of the nonunits in R[[x]] and is the unique maximal ideal of R[[x]]. Thus if R is a field, R[[x]] is a local ring.

The degree of a nonzero monomial $ax_1^{k_1}x_2^{k_2}\cdots x_n^{k_n}\in R[x_1,x_2,\cdots,x_n]$ is the nonnegative integer $k_1+k_2+\cdots+k_n$. If f is a nonzero polynomial, the degree of f is the maximum of the degrees of the monomials making up f. The degree of f is denoted deg f. A polynomial which is a sum of monomials, each with the same degree k, is said to be homogeneous of degree k. The degree of f in x_k is the degree of f considered as a polynomial in one indeterminate x_k over the ring $R[x_1,x_2,\cdots,x_{k-1},x_{k+1},\cdots,x_n]$. We define the degree of the zero polynomial to be $-\infty$.

Theorem 8. Let R be a ring and $f, g \in R[x_1, x_2, \dots, x_n]$.

- (i) $\deg(f+q) < \max\{\deg f, \deg q\}$
- (ii) $\deg(fg) \le \deg f + \deg g$

- (iii) If R has no zero divisors, deg(fg) = deg f + deg g.
- (iv) If n = 1 and the leading coefficient of f or g is not a zero divisor in R, deg(fg) = deg f + deg g.

Theorem 9 (Division Algorithm). Let R be a ring with identity and $f, g \in R[x]$ nonzero polynomials such that the leading coefficient of g is a unit in R. Then there exist unique polynomials $q, r \in R[x]$ such that f = qq + r and $\deg r < \deg q$.

Proof. If $\deg g > \deg f$, let q=0 and r=f. If $\deg g \leq \deg f$, $f=\sum_{i=0}^n a_i x^i, g=\sum_{i=0}^m b_i x^i$ with $a_n \neq 0, b_m \neq 0, m \leq n, b_m$ a unit in R. Proceed by induction on n. If n=0, m=0 and $q_0=a_0b_0^{-1}, r=0$. Assume the existence is true for polynomials with degree less than n. The polynomial $a_nb_m^{-1}x^{n-m}g$ has degree n and leading coefficient a_n . Hence $f-a_nb_m^{-1}x^{n-m}g$ is a polynomial of degree less than n. There exist polynomials q', r such that $f-a_nb_m^{-1}x^{n-m}g=q'g+r$ and $\deg r < \deg g$. Thus if $q=a_nb_m^{-1}x^{n-m}+q', f=qg+r$. For uniqueness, suppose $f=q_1g+r_1=q_2g+r_2$, $\deg r_1<\deg g$ and $\deg r_2<\deg g$. $q_1g+r_1=q_2g+r_2$ implies $(q_1-q_2)g=r_2-r_1$. Since the leading coefficient of g is a unit,

$$\deg(q_1 - q_2) + \deg g = \deg(r_2 - r_1)$$

Since $\deg(r_2 - r_1) < \deg g$, the above inequality is true only if $q_1 = q_2$ and $r_1 = r_2$.

Corollary 4 (Remainder Theorem). Let R be a ring with identity and $f \in R[x]$. $\forall c \in R, \exists ! g \in R[x]$ such that f(x) = g(x)(x - c) + f(c)

Corollary 5. If F is a field, then the polynomial F[x] is a Euclidean domain. The units in F[x] are precisely the nonzero constant polynomials.

Proof. Since F is an integral domain, F[x] is an integral domain. Define ϕ : $F[x] \setminus \{0\} \to \mathbb{N}$ by $\phi(f) = \deg f$. By the division algorithm, F[x] is a Euclidean domain. Since each unit in F[x] must have degree 0, the units of F[x] are precisely the nonzero constant polynomials.

Definition 1. Let R be a subring of a commutative ring S, $c_1, c_2, cdots, c_n \in S$ and $f = \sum_{i=0}^m a_i x_1^{k_{i1}} x_2^{k_{i2}} \cdots x_n^{k_{in}} \in R[x_1, x_2, \cdots, x_n]$ a polynomial such that $f(c_1, c_2, \cdots, c_n) = 0$. Then (c_1, c_2, \cdots, c_n) is said to be a root or zero of f.

Theorem 10. Let R be a commutative ring with identity and $f \in R[x]$. Then $c \in R$ is a root of f iff $x - c \mid f$.

Proof. f(x) = q(x)(x-c) + f(c). If $x-c \mid f(x)$, then h(x)(x-c) = q(x)(x-c) + f(c) for $h \in R[x]$. Whence (h(x) - q(x))(x-c) = f(c). Thus substituting x = c gives f(c) = 0. If f(c) = 0, f(x) = q(x)(x-c).

Theorem 11. If D is an integral domain contained in an integral domain E and $f \in D[x]$ has degree n, then f has at most n distinct roots in E.

Proof. Let c_1, c_2, c_3, \cdots be the distinct roots of f in E. $f(x) = q_1(x)(x - c_1)$ whence $0 = f(c_2) = q_1(c_2)(c_2 - c_1)$. Since $c_1 \neq c_2$ and E is an integral domain, $q_1(c_2) = 0$. Thus $f(x) = q_2(x)(x - c_2)(x - c_1)$. An inductive argument shows for distinct roots $c_1, c_2, \cdots, c_m, g_m = (x - c_1)(x - c_2) \cdots (x - c_m)$ divides f. But $\deg g_m = m$. Thus $m \leq n$.

Theorem 12. Let D be a unique factorization domain with quotient field F and let $f = \sum_{i=0}^{n} a_i x^i \in D[x]$. If $u = c/d \in F$ with c and d relatively prime, u is a root of f, then $c \mid a_0$ and $d \mid a_n$.

Proof.
$$f(u) = 0$$
 implies that $a_0 d^n = c(\sum_{i=1}^n (-a_i)c^{i-1}d^{n-i}), -a_n c^n = (\sum_{i=0}^{n-1} c^i d^{n-i-1})d$. If $(c,d) = 1_D$, then $c \mid a_0$ and $d \mid a_n$.

Let D be an integral domain and $f \in D[x]$. If $c \in D$ and c is a root of f, then there is a greatest integer m such that $f(x) = (x-c)^m g(x)$ where $g \in D[x]$ and $x-c \nmid g(x)$. The integer m is called the multiplicity of the root c of f. If c has multiplicity 1, c is said to be a simple root. If c has multiplicity greater than 1, c is called a multiple root.

Lemma 1. Let D be an integral domain and $f = \sum_{i=0}^{n} a_i x^i \in D[x]$. Let $f' \in D[x]$ be the polynomial $f' = \sum_{k=1}^{n} k a_k x^{k-1}$. Then $\forall f, g \in D[x], c \in D$:

- (i) (cf)' = cf'
- (ii) (f+g)' = f' + g'
- (iii) (fg)' = f'g + f'g
- (iv) $(g^n)' = ng^{n-1}g'$

The polynomial f' is called the formal derivative of f.

Theorem 13. Let D be an integral domain and a subring of integral domain E. Let $f \in D[x]$ and $c \in E$.

- (i) c is a multiple root of f iff f(c) = 0 and f'(c) = 0.
- (ii) If D is a field and f is relatively prime to f', then f has no multiple roots in E.
- (iii) If D is a field, f is irreducible in D[x] and E contains a root of f, then f has no multiple roots in E iff $f' \neq 0$.

Proof. (i). $f(x) = (x - c)^m g(x)$ where $g(c) \neq 0$.

$$f'(x) = m(x - c)^{m-1}g(x) + (x - c)^m g'(x)$$

If m > 1, then f'(c) = 0. Conversely, if f(c) = 0, then $m \ge 1$. If m = 1, then f'(x) = g(x) + (x - c)g'(x). Thus f'(c) = 0 means f'(c) = g(c) which is a contradiction. Therefore m > 1.

- (ii). Since D[x] is a Euclidean domain, $\exists k, h \in D[x]$ such that $kf + hf' = 1_D$. If c is a multiple root of f, then $1_D = k(c)f(c) + h(c)f'(c) = 0$, a contradiction. Thus c is a simple root.
- (iii). If f is irreducible and $f' \neq 0$, then f and f' are relatively prime since $\deg f' < \deg f$. Therefore, f has no multiple roots in E. Conversely, suppose f has no multiple roots in E and f is a root of f in f. If f' = 0, then f is a multiple root of f, a contradiction. Hence $f' \neq 0$.

Let D be an integral domain, the following facts hold:

- 1. The units of D[x] are precisely the constant polynomials that are units in D.
- 2. If $c \in D$ and c is irreducible in D, c is irreducible in D[x].
- 3. Every first degree polynomial whose leading coefficient is a unit in D is irreducible in D[x]. In particular, every first degree polynomial over a field is irreducible.
- 4. Suppose D is a subring of integral domain E and $f \in D[x]$. Then f may be irreducible in E[x] but not in D[x] and vice versa.

For the last point, note that 2x + 2 is irreducible in $\mathbb{Q}[x]$ but not in $\mathbb{Z}[x]$. $x^2 + 1$ is irreducible in $\mathbb{R}[x]$ but not in $\mathbb{C}[x]$.

Let D be a unique factorization domain and $f = \sum_{i=0}^{n} a_i x^i$ a nonzero polynomial in D[x]. A greatest common divisor of a_0, a_1, \dots, a_n is called a content of f and is denoted C(f). Write $b \approx c$ whenever b and c are associates in D. Then \approx is an equivalence relation on D. Since D is an integral domain, $b \approx c \iff \exists u \in D, b = cu$ and u is a unit. If $a \in D$ and $f \in D[x]$ then $C(af) \approx aC(f)$. If $f \in D[x]$ and C(f) is a unit in D, then f is said to be primitive. For any polynomial $g \in D[x]$, $g = C(g)g_1$ with g_1 primitive.

Lemma 2. If D is a unique factorization domain and $f, g \in D[x]$, then $C(fg) \approx C(f)C(g)$. The product of primitive polynomials is primitive.

Proof. Let $f = C(f)f_1, g = C(g)g_1, f_1, g_1$ primitive. It suffices to prove that f_1g_1 is primitive. Let $f_1 = \sum_{i=0}^n a_i x^i$ and $g_1 = \sum_{j=0}^m b_j x^j$. $f_1g_1 = \sum_{k=0}^{m+n} c_k x^k$ with $c_k = \sum_{i+j=k} a_i b_j$. If f_1g_1 is not primitive, there exists an irreducible element $p \in R$ such that $\forall k, p \mid c_k$. Since $C(f_1)$ is a unit, $p \nmid C(f_1)$ whence there is a least integer s such that $p \mid a_i$ for i < s and $p \nmid a_s$. Similarly, there is a least integer t such that $t \mid b_i$ for $t \in S$ and $t \mid b_i$. Since $t \mid b_i$ divides $t \mid b_i$ and

$$c_{s+t} = a_0 b_{s+t} + \dots + a_{s-1} b_{t+1} + a_s b_t + a_{s+1} b_{t-1} + \dots + a_{s+t} b_0$$

 $p \mid a_s b_t$ implying $p \mid a_s$ or $p \mid b_t$, a contradiction.

Lemma 3. Let D be a unique factorization domain with quotient field F and let f and g be primitive polynomials in D[x]. Then f and g are associates in D[x] iff they are associates in F[x].

Proof. If f and g are associates in F[x], f = gu for some $u \in F[x]$ a unit. $u \in F$ so u = b/c where $b, c \in D, c \neq 0$. Thus cf = bg. Since C(f), C(g) are units in D, $c \approx C(cf) \approx C(bg) \approx b$. Thus $\exists v \in D$ a unit such that b = cv. cf = bg = cvg. Thus f = vg whence f and g are associates in D[x]. The converse is obvious.

Lemma 4. Let D be a UFD with quotient field F and f a primitive polynomial of positive degree in D[x]. Then f is irreducible in D[x] iff f is irreducible in F[x].

Proof. Suppose f is irreducible in D[x] and f = gh with $g, h \in F[x]$, $\deg g \ge 1$, $\deg h \ge 1$. $g = \sum_{i=0}^n (a_i/b_i)x^i$ and $h = \sum_{j=0}^m (c_j/d_j)x^j$ with $a_i, b_i, c_j, d_j \in D$ and $b_i \ne 0, d_j \ne 0$. Let $b = b_0b_1b_2\cdots b_n$ and for each i let $b_i^* = b_0b_1\cdots b_{i-1}b_{i+1}\cdots b_n$. If $g_1 = \sum_{i=0}^n a_ib_i^*x^i \in D[x]$, then $g_1 = ag_2$ with $a = C(g_1), g_2 \in D[x]$ and g_2 primitive. $g = (1_D/b)g_1 = (a/b)g_2$ and $\deg g = \deg g_2$. Similarly, $h = (c/d)h_2$ with $c, d \in D, h_2 \in D[x]$, h_2 primitive and $\deg h = \deg h_2$. $f = (a/b)(c/d)g_2h_2$ thus $bdf = acg_2h_2$ implying $bd \approx ac$. $\exists v \in D$ a unit such that bd = acv. $acg_2h_2 = acvf \implies g_2h_2 = vf$ so $f \approx g_2h_2$. Then f is reducible in D[x], a contradiction. Thus f is irreducible in F[x]. Conversely, if f is irreducible in F[x], f = gh with $g, h \in D[x]$, then one of them, say g is a constant. Thus f is irreducible in D[x]. Thus f is irreducible in D[x]. Thus f is irreducible in D[x].

Theorem 14. If D is a UFD, so is $D[x_1, x_2, \dots, x_n]$.

Proof. We only need to prove D[x] is UFD since $D[x_1, x_2, \cdots, x_n] \cong D[x_1, x_2, \cdots, x_{n-1}][x_n]$. If f has positive degree, $f = C(f)f_1$ with f_1 primitive and positive degree. Since D is a UFD, C(f) is a unit or $C(f) = c_1c_2\cdots c_m$ with each c_i irreducible in D and hence in D[x]. Let F be the quotient field of F. Since F[x] is a UFD containing D[x], $f_1 = p_1^*p_2^*\cdots p_n^*$ with each p_i^* an irreducible polynomial in F[x]. For each i, $p_i^* = (a_i/b_i)p_i$ with $a_i, b_i \in D$, $b_i \neq 0$, $p_i \in D[x]$, p_i primitive. Each p_i is irreducible in F[x] whence each p_i is irreducible in D[x]. If $a = a_1a_2\cdots a_n$, $b = b_1b_2\cdots b_n$, $f_1 = (a/b)p_1p_2\cdots p_n$. Thus $bf_1 = ap_1p_2\cdots p_n$. Since $f_1, p_1, p_2, \cdots, p_n$ are primitive, a and b are associates in b. Thus a/b = u, with b a unit in b. Thus if b is a nonunit, b is a nonunit, b is a unit.

For uniqueness, suppose f is a nonprimitive polynomial in D[x] of positive degree. Any factorization of f as a product of irreducible elements may be written as $f = c_1 c_2 \cdots c_m p_1 p_2 \cdots p_n$ with each c_i irreducible in D, each p_i irreducible and hence primitive in D[x] of positive degree. Suppose $f = d_1 \cdots d_r q_1 \cdots q_s$ where d_i irreducible in D, q_j irreducible in D[x] of positive degree. Then $c_1 c_2 \cdots c_m$ and $d_1 \cdots d_r$ are associates in D. Unique factorization in D implies m = r and after reindexing, c_i is an associate of d_i . $p_1 p_2 \cdots p_n$ is associate to $q_1 q_2 \cdots q_s$ in D[x]. Since F[x] is a UFD, n = s and each p_i is associate of q_i in F[x] after reindexing. They are associates in D[x] by the lemma.

Theorem 15 (Eisenstein's Criterion). Let D be a UDF with quotient field F. If $f = \sum_{i=0}^{n} a_i x^i \in D[x]$, deg $f \geq 1$ and p is an irreducible element of D such

that $p \nmid a_n$, $p \mid a_i$ for $i \in \{0, 1, 2, \dots, n-1\}$, $p^2 \nmid a_0$, then f is irreducible in F[x]. If f is primitive, then f is irreducible in D[x].

Proof. $f = C(f)f_1$, f_1 primitive in D[x], $C(f) \in D$. Since C(f) is a unit in F, it suffices to show f_1 is irreducible in F[x]. We only need to prove f_1 is irreducible in D[x]. Suppose $f_1 = gh$ with

$$g = b_r x^r + \dots + b_0 \in D[x], \quad \deg g = r \ge 1$$

$$h = c_s x^s + \dots + c_0 \in D[x], \quad \deg h = s \ge 1$$

Since $p \nmid C(f)$, p has the same divisibility conditions to a_i^* , the coefficients of f_1 , as it does to a_i . Since $p \mid a_0^* = b_0 c_0$, either $p \mid b_0$ or $p \mid c_0$, say $p \mid b_0$. Since $p^2 \nmid a_0$, $p \nmid c_0$. Some coefficient b_k of g is not divisible by p otherwise f_1 would not be primitive. Let k be the least integer such that $p \mid b_i$ for i < k and $p \nmid b_k$. Then $1 \le k \le r < n$. Since

$$a_k^* = b_0 c_k + b_1 c_{k-1} + \dots + b_{k-1} c_1 + b_k c_0$$

and $p \mid a_k^*, p \mid b_k c_0$ whence $p \mid b_k$ or $p \mid c_0$, a contradiction. Thus f_1 must be irreducible in D[x].