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Theorem 1. Let R be a ring and let R[x] denote the set of all sequences of
elements of R, (a0, a1, · · · ), such that ai = 0 for all but finitely many indices.

(i) R[x] is a ring with addition and multiplication defined by

(a0, a1, · · · ) + (b0, b1, · · · ) = (a0 + b0, a1 + b1, · · · )

(a0, a1, · · · )(b0, b1, · · · ) = (c0, c1, · · · )
where cn =

∑n
i=0 an−ibi.

(ii) If R is commutative [resp. a ring with identity, ring with no zero divisors,
integral domain], so is R[x].

(iii) The map R→ R[x] given by r 7→ (r, 0, 0, · · · ) is a monomorphism of rings.

The ring R[x] is called the ring of polynomials over R.

Theorem 2. Let R be a ring with identity and denote by x the element (0, 1R, 0, 0, 0, · · · ) ∈
R[x].

(i) xn = (0, 0, · · · , 0, 1R, 0, · · · ) where 1R is the (n+ 1)th coordinate.

(ii) If r ∈ R, rxn = xnr = (0, · · · , 0, r, 0, · · · ) where r is the (n+ 1)th coordi-
nate.

(iii) For every nonzero polynomial f ∈ R[x], ∃n ∈ N, elements a0, a1, · · · , an ∈
R such that f = a0x

0 + a1x
1 + · · · + anx

n. The elements n and ai are
unique in the sense that f = b0x

0 + b1x
1 + · · · + bmx

m implies m ≥ n,
ai = bi for i ∈ {0, 1, · · · , n} and bi = 0 for n < i ≤ m.

If R has an identity, x0 = 1R and we write polynomials as f = a0 + a1x +
a2x

2 + cdots + anx
n. If R is a ring without identity, embed R to a ring S

with identity. Identify R with its image under the embedding map so that R
is a subring of S. Then R[x] is a subring of S[x]. Thus every polynomial f =
(a0, a1, · · · ) ∈ R[x] can be written uniquely as f = a0 + a1x+ a2x

2 + · · ·+ anx
n

where ai ∈ R, an ̸= 0, x = (0, 1S , 0, 0, · · · ) ∈ S[x]. If f =
∑n

i=0 aix
i ∈ R[x],

the elements ai ∈ R are called the coefficients of f . The element a0 is called
the constant term. Elements of R which have the form r = (r, 0, 0, · · · ) are
called constant polynomials. If f =

∑n
i=0 aix

i and an ̸= 0, then an is called the
leading coefficient of f . If R has an identity and f has leading coefficient 1R,
then f is said to be a monic polynomial.

Let R be a ring with identity. The element x = (0, 1R, 0, 0, · · · ) of R[x] is
called an indeterminate. If S is another ring with identity, the indeterminate
x ∈ S[x] is not the same element as x ∈ R[x]. We can also define polynomials
in more than one indeterminate.
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Theorem 3. Let R be a ring and denote by R[x1, x2, · · · , xn] the set of functions
f : Nn → R such that f(u) ̸= 0 for at most a finite number of elements u of Nn.

(i) R[x1, x2, · · · , xn] is a ring with addition and multiplication defined by

(f + g)(u) = f(u) + g(u), (fg)(u) =
∑

v+w=u

f(v)g(w)

where f, g ∈ R[x1, x2, · · · , xn] and u ∈ Nn.

(ii) If R is commutative [resp. ring with identity, ring without zero divisors,
integral domain], so is R[x1, x2, · · · , xn].

(iii) The map R → R[x1, x2, · · · , xn] : r 7→ fr where fr(0, 0, · · · , 0) = r and
fr(u) = 0 for all u ∈ Nn \ {(0, 0, · · · , 0)} is a monomorphism of rings.

The ring R[x1, x2, · · · , xn] is called the ring of polynomials in n determinates
over R. R is considered a subring of R[x1, x2, · · · , xn]. Let n be a positive integer
and for i ∈ {1, 2, · · · , n}, let ϵi = (0, · · · , 0, 1, 0, · · · , 0) ∈ Nn where 1 is the ith
coordinate of ϵi. Every element of Nn may be written as k1ϵ1+k2ϵ2+ · · ·+knϵn.

Theorem 4. Let R be a ring with identity and n a positive integer. ∀i ∈
{1, 2, · · · , n}, let xi ∈ R[x1, x2, · · · , xn] be defined by xi(ϵi) = 1R and xi(u) = 0
for u ̸= ϵi.

(i) ∀k ∈ N, xki (kϵi) = 1R and xki (u) = 0 for u ̸= kϵi.

(ii) ∀(k1, k2, · · · , kn) ∈ Nn, (xk1
1 x

k2
2 · · ·xkn

n )(k1ϵ1+k2ϵ2+ · · ·+knϵn) = 1R and
xk1
1 x

k2
2 · · ·xkn

n (u) = 0 for u ̸= k1ϵ1 + k2ϵ2 + · · ·+ knϵn.

(iii) ∀t, s ∈ N,∀i, j ∈ {1, 2, · · · , n}, xtixsj = xsjx
t
i

(iv) ∀r ∈ R, t ∈ N, xtir = rxti

(v) ∀f ∈ R[x1, x2, · · · , xn] there exists unique elements ak1,k2,··· ,kn
∈ R in-

dexed by all (k1, k2, · · · , kn) ∈ Nn and nonzero for at most a finite number
of (k1, k2, · · · , kn) ∈ Nn such that f =

∑
ak1,k2,··· ,knx

k1
1 x

k2
2 · · ·xkn

n .

If R is a ring with identity, the elements x1, x2, · · · , xn are called indetermi-
nates. The elements ak1,k2,··· ,kn are called coefficients of the polynomial f . A

polynomial of the form axk1
1 x

k2
2 · · ·xkn

n is called a monomial. The notation and
terminology is extended to polynomial rings where R has no identity. Embed
the ring R to a ring S with identity and consider R[x1, x2, · · · , xn] as a subring of
S[x1, x2, · · · , xn]. If R is any ring, for any subset {i1, i2, · · · , ik} ⊆ {1, 2, · · · , n},
the monomorphism R[xi1 , xi2 , · · · , xik ] → R[x1, x2, · · · , xn] exists.

Let ϕ : R→ S be a homomorphism of rings, f ∈ R[x1, x2, · · · , xn], s1, s2, · · · , sn ∈
S. Let f =

∑m
i=0 aix

ki1
1 · · ·xkin

n . Let

ϕf(s1, s2, · · · , sn) =
n∑

i=0

ϕ(ai)s
ki1
1 ski2

2 · · · skin
n ∈ S
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Theorem 5. Let R and S be commutative rings with identity and ϕ : R→ S a
homomorphism of rings such that ϕ(1R) = 1S. If s1, s2, · · · , sn ∈ S, then there
is a unique homomorphism of rings ϕ̄ : R[x1, x2, · · · , xn] → S such that ϕ̄ |R= ϕ
and ϕ̄(xi) = si for i ∈ {1, 2, · · · , n}. This property determines the polynomial
ring R[x1, x2, · · · , xn] up to isomorphism.

Proof. If f ∈ R[x1, x2, · · · , xn], then f =
∑m

i=0 aix
ki1
1 xki2

2 · · ·xkin
n . The map ϕ̄

given by ϕ̄(f) = ϕf(s1, s2, · · · , sn) is a well-defined map such that ϕ̄ |R= ϕ
and ϕ̄(xi) = si. It is easy to verify that ϕ̄ is a homomorphism. Suppose that
ψ : R[x1, x2, · · · , xn] → S is a homomorphism with ψ |R= ϕ, ψ(xi) = si.
Then ψ(f) = ϕ̄(f) by direct computation. Define a category C whose objects
are tuples (ψ,K, s1, s2, · · · , sn) where K is a commutative ring with identity,
s1, s2, · · · , sn ∈ K, ψ : R → K a homomorphism with ψ(1R) = 1K . A mor-
phism in C from (ψ,K, s1, · · · , sn) to (θ, T, t1, t2, · · · , tn) is a homomorphism
ζ : K → T such that ζ(1K) = 1T , ζ ◦ ψ = θ and ζ(si) = ti. Verify that ζ is an
equivalence in C iff ζ is an equivalence of rings. If ι : R → R[x1, x2, · · · , xn] is
the inclusion map, (ι, R[x1, x2, · · · , xn], x1, · · · , xn) is a universal object in C .
Thus R[x1, x2, · · · , xn] is completely determined up to isomorphism.

Corollary 1. If ϕ : R → S is a homomorphism of commutative rings and
s1, s2, · · · sn ∈ S then the map R[x1, x2, · · · , xn] → S given by f 7→ ϕf(s1, · · · , sn)
is a homomorphism of rings.

Proof. The proof that f 7→ ϕf(s1, s2, · · · , sn) is a homomorphism does not rely
on R containing an identity.

The map R[x1, x2, · · · , xn] → S is called the evaluation homomorphism. The
corollary may be false when R and S are not commutative.

Corollary 2. Let R be a commutative ring with identity and n a positive integer.
∀k ∈ {1, 2, · · · , n}, there are isomorphisms of rings R[x1, x2, · · · , xk][xk+1, · · · , xn] ∼=
R[x1, x2, · · · , xn] ∼= R[xk+1, · · · , xn][x1, x2, · · · , xk].

Proof. Given a homomorphism ϕ : R→ S of commutative rings with identity, el-
ements s1, s2, · · · , sn ∈ S, there exists a homomorphism ϕ̄ : R[x1, x2, · · · , xk] →
S such that ϕ̄ |R= ϕ, ϕ̄(xi) = si. Applying the theorem with R[x1, x2, · · · , xk] in
place of R gives ¯̄ϕ : R[x1, x2, · · · , xk][xk+1, · · · , xn] → S such that ¯̄ϕ |R= ϕ and
¯̄ϕ(xi) = si for all i ∈ {1, 2, · · · , n}. Due to the uniqueness up to isomorphism,
R[x1, x2, · · · , xk][xk+1, · · · , xn] ∼= R[x1, x2, · · · , xn]. The other isomorphism fol-
lows similarly.

Theorem 6. Let R be a ring and denote R[[x]] the set of all sequences of
elements in R.

(i) R[[x]] is a ring with addition and multiplication defined in the same way
as the operations for R[x].

(ii) R[x] is a subring of R[[x]].
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(iii) If R is commutative (resp. ring with identity, no zero divisors, integral
domain), then so is R[[x]].

The ring R[[x]] is called the ring of formal power series over the ring R. Its
elements are called power series.

Theorem 7. Let R be a ring with identity and f =
∑∞

i=0 aix
i ∈ R[[x]].

(i) f is a unit in R[[x]] iff its constant term a0 is a unit in R.

(ii) If a0 is irreducible in R, then f is irreducible in R[[x]].

Proof. (i). If ∃g ∈ R[[x]], g =
∑

i bix
i such that fg = gf = 1R, it follows

immediately that a0b0 = b0a0 = 1R. Whence a0 is a unit. Suppose a0 is a unit
in R. If ∃g ∈ R[[x]], g =

∑
i bix

i such that fg = 1R, then

a0b0 = 1R

a0b1 + a1b0 = 0

...

a0bn + a1bn−1 + · · ·+ anb0 = 0

...

Conversely, if a solution (b0, b1, · · · ) exists for this system of equations in R,
then g =

∑∞
i=0 bix

i ∈ R[[x]] satisfies fg = 1R. Take b0 = a−1
0 , b1 = a−1

0 (−a1b0).
Similarly, bn = −a−1

0 (a1bn−1 + · · · + anb0). Thus the system of equations is
solvable. A similar argument shows the existence of a left inverse for f in R[[x]].
(ii) is an immediate consequence of (i).

Corollary 3. If R is a division ring, the units in R[[x]] are precisely those power
series with nonzero constant terms. The principal ideal (x) consists precisely of
the nonunits in R[[x]] and is the unique maximal ideal of R[[x]]. Thus if R is a
field, R[[x]] is a local ring.

The degree of a nonzero monomial axk1
1 x

k2
2 · · ·xkn

n ∈ R[x1, x2, · · · , xn] is the
nonnegative integer k1 + k2 + · · ·+ kn. If f is a nonzero polynomial, the degree
of f is the maximum of the degrees of the monomials making up f . The degree
of f is denoted deg f . A polynomial which is a sum of monomials, each with the
same degree k, is said to be homogeneous of degree k. The degree of f in xk is
the degree of f considered as a polynomial in one indeterminate xk over the ring
R[x1, x2, · · · , xk−1, xk+1, · · · , xn]. We define the degree of the zero polynomial
to be −∞.

Theorem 8. Let R be a ring and f, g ∈ R[x1, x2, · · · , xn].

(i) deg(f + g) ≤ max{deg f, deg g}

(ii) deg(fg) ≤ deg f + deg g
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(iii) If R has no zero divisors, deg(fg) = deg f + deg g.

(iv) If n = 1 and the leading coefficient of f or g is not a zero divisor in R,
deg(fg) = deg f + deg g.

Theorem 9 (Division Algorithm). Let R be a ring with identity and f, g ∈ R[x]
nonzero polynomials such that the leading coefficient of g is a unit in R. Then
there exist unique polynomials q, r ∈ R[x] such that f = qg+r and deg r < deg g.

Proof. If deg g > deg f , let q = 0 and r = f . If deg g ≤ deg f , f =
∑n

i=0 aix
i, g =∑m

i=0 bix
i with an ̸= 0, bm ̸= 0,m ≤ n, bm a unit in R. Proceed by induction

on n. If n = 0,m = 0 and q0 = a0b
−1
0 , r = 0. Assume the existence is true for

polynomials with degree less than n. The polynomial anb
−1
m xn−mg has degree n

and leading coefficient an. Hence f−anb−1
m xn−mg is a polynomial of degree less

than n. There exist polynomials q′, r such that f − anb
−1
m xn−mg = q′g + r and

deg r < deg g. Thus if q = anb
−1
m xn−m+ q′, f = qg+ r. For uniqueness, suppose

f = q1g + r1 = q2g + r2, deg r1 < deg g and deg r2 < deg g. q1g + r1 = q2g + r2
implies (q1 − q2)g = r2 − r1. Since the leading coefficient of g is a unit,

deg(q1 − q2) + deg g = deg(r2 − r1)

Since deg(r2 − r1) < deg g, the above inequality is true only if q1 = q2 and
r1 = r2.

Corollary 4 (Remainder Theorem). Let R be a ring with identity and f ∈ R[x].
∀c ∈ R,∃!q ∈ R[x] such that f(x) = q(x)(x− c) + f(c)

Corollary 5. If F is a field, then the polynomial F [x] is a Euclidean domain.
The units in F [x] are precisely the nonzero constant polynomials.

Proof. Since F is an integral domain, F [x] is an integral domain. Define ϕ :
F [x] \ {0} → N by ϕ(f) = deg f . By the division algorithm, F [x] is a Euclidean
domain. Since each unit in F [x] must have degree 0, the units of F [x] are
precisely the nonzero constant polynomials.

Definition 1. Let R be a subring of a commutative ring S, c1, c2, cdots, cn ∈ S
and f =

∑m
i=0 aix

ki1
1 xki2

2 · · ·xkin
n ∈ R[x1, x2, · · · , xn] a polynomial such that

f(c1, c2, · · · , cn) = 0. Then (c1, c2, · · · , cn) is said to be a root or zero of f .

Theorem 10. Let R be a commutative ring with identity and f ∈ R[x]. Then
c ∈ R is a root of f iff x− c | f .

Proof. f(x) = q(x)(x − c) + f(c). If x − c | f(x), then h(x)(x − c) = q(x)(x −
c) + f(c) for h ∈ R[x]. Whence (h(x)− q(x))(x− c) = f(c). Thus substituting
x = c gives f(c) = 0. If f(c) = 0, f(x) = q(x)(x− c).

Theorem 11. If D is an integral domain contained in an integral domain E
and f ∈ D[x] has degree n, then f has at most n distinct roots in E.
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Proof. Let c1, c2, c3, · · · be the distinct roots of f in E. f(x) = q1(x)(x − c1)
whence 0 = f(c2) = q1(c2)(c2 − c1). Since c1 ̸= c2 and E is an integral domain,
q1(c2) = 0. Thus f(x) = q2(x)(x − c2)(x − c1). An inductive argument shows
for distinct roots c1, c2, · · · , cm, gm = (x − c1)(x − c2) · · · (x − cm) divides f .
But deg gm = m. Thus m ≤ n.

Theorem 12. Let D be a unique factorization domain with quotient field F
and let f =

∑n
i=0 aix

i ∈ D[x]. If u = c/d ∈ F with c and d relatively prime, u
is a root of f , then c | a0 and d | an.

Proof. f(u) = 0 implies that a0d
n = c(

∑n
i=1(−ai)ci−1dn−i), −ancn = (

∑n−1
i=0 c

idn−i−1)d.
If (c, d) = 1D, then c | a0 and d | an.

Let D be an integral domain and f ∈ D[x]. If c ∈ D and c is a root of f ,
then there is a greatest integer m such that f(x) = (x−c)mg(x) where g ∈ D[x]
and x − c ∤ g(x). The integer m is called the multiplicity of the root c of f . If
c has multiplicity 1, c is said to be a simple root. If c has multiplicity greater
than 1, c is called a multiple root.

Lemma 1. Let D be an integral domain and f =
∑n

i=0 aix
i ∈ D[x]. Let

f ′ ∈ D[x] be the polynomial f ′ =
∑n

k=1 kakx
k−1. Then ∀f, g ∈ D[x], c ∈ D:

(i) (cf)′ = cf ′

(ii) (f + g)′ = f ′ + g′

(iii) (fg)′ = f ′g + f ′g

(iv) (gn)′ = ngn−1g′

The polynomial f ′ is called the formal derivative of f .

Theorem 13. Let D be an integral domain and a subring of integral domain
E. Let f ∈ D[x] and c ∈ E.

(i) c is a multiple root of f iff f(c) = 0 and f ′(c) = 0.

(ii) If D is a field and f is relatively prime to f ′, then f has no multiple roots
in E.

(iii) If D is a field, f is irreducible in D[x] and E contains a root of f , then f
has no multiple roots in E iff f ′ ̸= 0.

Proof. (i). f(x) = (x− c)mg(x) where g(c) ̸= 0.

f ′(x) = m(x− c)m−1g(x) + (x− c)mg′(x)

If m > 1, then f ′(c) = 0. Conversely, if f(c) = 0, then m ≥ 1.If m = 1, then
f ′(x) = g(x) + (x − c)g′(x). Thus f ′(c) = 0 means f ′(c) = g(c) which is a
contradiction. Therefore m > 1.

6



(ii). Since D[x] is a Euclidean domain, ∃k, h ∈ D[x] such that kf + hf ′ = 1D.
If c is a multiple root of f , then 1D = k(c)f(c) + h(c)f ′(c) = 0, a contradiction.
Thus c is a simple root.
(iii). If f is irreducible and f ′ ̸= 0, then f and f ′ are relatively prime since
deg f ′ < deg f . Therefore, f has no multiple roots in E. Conversely, suppose
f has no multiple roots in E and b is a root of f in E. If f ′ = 0, then b is a
multiple root of f , a contradiction. Hence f ′ ̸= 0.

Let D be an integral domain, the following facts hold:

1. The units of D[x] are precisely the constant polynomials that are units in
D.

2. If c ∈ D and c is irreducible in D, c is irreducible in D[x].

3. Every first degree polynomial whose leading coefficient is a unit in D is
irreducible in D[x]. In particular, every first degree polynomial over a field
is irreducible.

4. Suppose D is a subring of integral domain E and f ∈ D[x]. Then f may
be irreducible in E[x] but not in D[x] and vice versa.

For the last point, note that 2x+2 is irreducible in Q[x] but not in Z[x]. x2+1
is irreducible in R[x] but not in C[x].

Let D be a unique factorization domain and f =
∑n

i=0 aix
i a nonzero poly-

nomial in D[x]. A greatest common divisor of a0, a1, · · · , an is called a content
of f and is denoted C(f). Write b ≈ c whenever b and c are associates in
D. Then ≈ is an equivalence relation on D. Since D is an integral domain,
b ≈ c ⇐⇒ ∃u ∈ D, b = cu and u is a unit. If a ∈ D and f ∈ D[x] then
C(af) ≈ aC(f). If f ∈ D[x] and C(f) is a unit in D, then f is said to be
primitive. For any polynomial g ∈ D[x], g = C(g)g1 with g1 primitive.

Lemma 2. If D is a unique factorization domain and f, g ∈ D[x], then C(fg) ≈
C(f)C(g). The product of primitive polynomials is primitive.

Proof. Let f = C(f)f1, g = C(g)g1, f1, g1 primitive. It suffices to prove that
f1g1 is primitive. Let f1 =

∑n
i=0 aix

i and g1 =
∑m

j=0 bjx
j . f1g1 =

∑m+n
k=0 ckx

k

with ck =
∑

i+j=k aibj . If f1g1 is not primitive, there exists an irreducible
element p ∈ R such that ∀k, p | ck. Since C(f1) is a unit, p ∤ C(f1) whence there
is a least integer s such that p | ai for i < s and p ∤ as. Similarly, there is a least
integer t such that p | bj for j < t and p ∤ bt. Since p divides cs+t and

cs+t = a0bs+t + · · ·+ as−1bt+1 + asbt + as+1bt−1 + · · ·+ as+tb0

p | asbt implying p | as or p | bt, a contradiction.

Lemma 3. Let D be a unique factorization domain with quotient field F and
let f and g be primitive polynomials in D[x]. Then f and g are associates in
D[x] iff they are associates in F [x].

7



Proof. If f and g are associates in F [x], f = gu for some u ∈ F [x] a unit.
u ∈ F so u = b/c where b, c ∈ D, c ̸= 0. Thus cf = bg. Since C(f), C(g) are
units in D, c ≈ C(cf) ≈ C(bg) ≈ b. Thus ∃v ∈ D a unit such that b = cv.
cf = bg = cvg. Thus f = vg whence f and g are associates in D[x]. The
converse is obvious.

Lemma 4. Let D be a UFD with quotient field F and f a primitive polynomial
of positive degree in D[x]. Then f is irreducible in D[x] iff f is irreducible in
F [x].

Proof. Suppose f is irreducible in D[x] and f = gh with g, h ∈ F [x], deg g ≥
1,deg h ≥ 1. g =

∑n
i=0(ai/bi)x

i and h =
∑m

j=0(cj/dj)x
j with ai, bi, cj , dj ∈ D

and bi ̸= 0, dj ̸= 0. Let b = b0b1b2 · · · bn and for each i let b∗i = b0b1 · · · bi−1bi+1 · · · bn.
If g1 =

∑n
i=0 aib

∗
i x

i ∈ D[x], then g1 = ag2 with a = C(g1), g2 ∈ D[x] and g2
primitive. g = (1D/b)g1 = (a/b)g2 and deg g = deg g2. Similarly, h = (c/d)h2
with c, d ∈ D,h2 ∈ D[x], h2 primitive and deg h = deg h2. f = (a/b)(c/d)g2h2
thus bdf = acg2h2 implying bd ≈ ac. ∃v ∈ D a unit such that bd = acv.
acg2h2 = acvf =⇒ g2h2 = vf so f ≈ g2h2. Then f is reducible in D[x], a
contradiction. Thus f is irreducible in F [x]. Conversely, if f is irreducible in
F [x], f = gh with g, h ∈ D[x], then one of them, say g is a constant. Thus
C(f) ≈ gC(h). Since f is primitive, g is a unit in D and hence in D[x]. Thus
f is irreducible in D[x].

Theorem 14. If D is a UFD, so is D[x1, x2, · · · , xn].

Proof. We only need to proveD[x] is UFD sinceD[x1, x2, · · · , xn] ∼= D[x1, x2, · · · , xn−1][xn].
If f has positive degree, f = C(f)f1 with f1 primitive and positive degree. Since
D is a UFD, C(f) is a unit or C(f) = c1c2 · · · cm with each ci irreducible in
D and hence in D[x]. Let F be the quotient field of F . Since F [x] is a UFD
containing D[x], f1 = p∗1p

∗
2 · · · p∗n with each p∗i an irreducible polynomial in

F [x]. For each i, p∗i = (ai/bi)pi with ai, bi ∈ D, bi ̸= 0, pi ∈ D[x], pi prim-
itive. Each pi is irreducible in F [x] whence each pi is irreducible in D[x]. If
a = a1a2 · · · an, b = b1b2 · · · bn, f1 = (a/b)p1p2 · · · pn. Thus bf1 = ap1p2 · · · pn.
Since f1, p1, p2, · · · , pn are primitive, a and b are associates in D. Thus a/b = u,
with u a unit in D. Thus if C(f) is a nonunit, f = uc1c2 · · · cnp1p2 · · · pn.
Remove c1, c2, · · · , cm if C(f) is a unit.

For uniqueness, suppose f is a nonprimitive polynomial in D[x] of positive
degree. Any factorization of f as a product of irreducible elements may be writ-
ten as f = c1c2 · · · cmp1p2 · · · pn with each ci irreducible in D, each pi irreducible
and hence primitive in D[x] of positive degree. Suppose f = d1 · · · drq1 · · · qs
where di irreducible in D, qj irreducible in D[x] of positive degree. Then
c1c2 · · · cm and d1 · · · dr are associates in D. Unique factorization in D im-
plies m = r and after reindexing, ci is an associate of di. p1p2 · · · pn is associate
to q1q2 · · · qs in D[x]. Since F [x] is a UFD, n = s and each pi is associate of qi
in F [x] after reindexing. They are associates in D[x] by the lemma.

Theorem 15 (Eisenstein’s Criterion). Let D be a UDF with quotient field F .
If f =

∑n
i=0 aix

i ∈ D[x], deg f ≥ 1 and p is an irreducible element of D such
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that p ∤ an, p | ai for i ∈ {0, 1, 2, · · · , n − 1}, p2 ∤ a0, then f is irreducible in
F [x]. If f is primitive, then f is irreducible in D[x].

Proof. f = C(f)f1, f1 primitive in D[x], C(f) ∈ D. Since C(f) is a unit in
F , it suffices to show f1 is irreducible in F [x]. We only need to prove f1 is
irreducible in D[x]. Suppose f1 = gh with

g = brx
r + · · ·+ b0 ∈ D[x], deg g = r ≥ 1

h = csx
s + · · ·+ c0 ∈ D[x], deg h = s ≥ 1

Since p ∤ C(f), p has the same divisibility conditions to a∗i , the coefficients of
f1, as it does to ai. Since p | a∗0 = b0c0, either p | b0 or p | c0, say p | b0. Since
p2 ∤ a0, p ∤ c0. Some coefficient bk of g is not divisible by p otherwise f1 would
not be primitive. Let k be the least integer such that p | bi for i < k and p ∤ bk.
Then 1 ≤ k ≤ r < n. Since

a∗k = b0ck + b1ck−1 + · · ·+ bk−1c1 + bkc0

and p | a∗k, p | bkc0 whence p | bk or p | c0, a contradiction. Thus f1 must be
irreducible in D[x].
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