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We describe a construction known as the ring of fractions that has elements
of the form a/b. It is also known as the ring of quotients, but it sounds too
similar to the quotient ring, a completely different concept.

Definition 1. A nonempty subset S of a ring R is multiplicative provided that
a, b ∈ S =⇒ ab ∈ S.

Theorem 1. Let S be a multiplicative subset of a commutative ring R. The
relation defined on the set R× S defined by

(r, s) ∼ (r′, s′) ⇐⇒ ∃s1 ∈ S, s1(rs
′ − r′s) = 0

is an equivalence relation. Furthermore, if R has no zero divisors and 0 ∈ R\S,
then

(r, s) ∼ (r′, s′) ⇐⇒ rs′ − r′s = 0

Proof. (r, s) ∼ (r, s) and (r, s) ∼ (r′, s′) ⇐⇒ (r′, s′) ∼ (r, s) are obvious.
Assume (r, s) ∼ (r′, s′), (r′, s′) ∼ (r′′, s′′). Then ∃s1, s2 ∈ S such that s1(rs

′ −
r′s) = 0 and s2(r

′s′′ − r′′s′) = 0. Then

s1s2s
′(rs′′ − r′′s) = 0

Thus (r, s) ∼ (r′′, s′′). If R has no zero divisors and 0 ∈ R \ S, then ∃s1 ∈
S, s1(rs

′ − r′s) = 0. Since s1 is not a zero divisor, rs′ − r′s = 0.

Let S be a multiplicative subset of a commutative ring R and ∼ the equiv-
alence relation from earlier. The equivalence class of (r, s) ∈ R × S is denoted
r/s. The set of all equivalence classes is denoted S−1R. Verify that

(i) r/s = r′/s′ ⇐⇒ ∃s1 ∈ S, s1(rs
′ − r′s) = 0

(ii) tr/ts = r/s for all r ∈ R, t, s ∈ S

(iii) If 0 ∈ S, then S−1R consists of a single equivalence class.

Theorem 2. Let S be a multiplicative subset of a commutative ring R and
let S−1R be the set of equivalence classes under (r, s) ∼ (r′, s′) ⇐⇒ ∃s1 ∈
S, s1(rs

′ − r′s) = 0.

(i) S−1R is a commutative ring with identity, where addition and multiplica-
tion is defined by

r/s+ r′/s′ = (rs′ + r′s)/ss′, (r/s)(r′/s′) = rr′/ss′
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(ii) If R is a nonzero ring with no zero divisors and 0 ̸∈ S, S−1R is an integral
domain.

(iii) If R is a nonzero ring with no zero divisors and S is the set of all nonzero
elements of R, then S−1R is a field.

Proof. (i) If r/s = r1/s1, r
′/s′ = r′1/s

′
1, then ∃s2, s3 ∈ S such that

s2(rs1 − r1s) = 0, s3(r
′s′1 − r′1s

′) = 0

Multiply the first equation by s3s
′s′1 and the second by s2ss1. Add to get

s2s3[(rs
′ + r′s)s1s

′
1 − (r1s

′
1 + r′1s1)ss

′] = 0

Therefore (rs′ + r′s)/ss′ = (r1s
′
1 + r′1s1)/s1s

′
1. If we instead multiply the first

equation by s′1s3r
′ and the second by ss2r1, then add, we get

s2s3[rr
′s1s

′
1 − r1r

′
1ss

′] = 0

Thus rr′/ss′ = r1r
′
1/s1s

′
1. Hence addition and multiplication on S−1R is well-

defined.
(ii). If R has no zero divisors and 0 ̸∈ S, then r/s = 0/s ⇐⇒ r = 0. Thus
(r/s)(r′/s′) = 0 ⇐⇒ rr′ = 0. Since rr′ = 0 iff r = 0 or r′ = 0, it follows that
S−1R is an integral domain.
(iii). If r ̸= 0, the multiplicative inverse of r/s is s/r.

The ring S−1R is called the ring of fractions of R by S. When R is an integral
domain and S the set of all nonzero elements, S−1R is called the fraction field
or quotient field of R. If R is a nonzero commutative ring and S is the set of
all elements of R that are not zero divisors of R, then S−1R is called the total
ring of fractions of R.

Theorem 3. Let S be a multiplicative subset of a commutative ring R.

(i) The map ϕS : R → S−1R given by r 7→ rs/s for any s ∈ S is a well-defined
homomorphism of rings such that ϕS(s) is a unit in S−1R for every s ∈ S.

(ii) If 0 ̸∈ S and S contains no zero divisors, then ϕS is a monomorphism. In
particular, any integral domain may be embedded in its quotient field.

(iii) If R has an identity and S consists of units, then ϕS is an isomorphism.
In particular, the total ring of fractions of a field F is isomorphic to F .

Proof. (i). If s, s′ ∈ S, then rs/s = rs′/s′ whence ϕS is well-defined. Verify that
ϕS is a ring homomorphism and that ∀s ∈ S, s/s2 is the multiplicative inverse
of s2/s = ϕS(s).
(ii). If ϕS(r) = 0,∃s1 ∈ S, rs2s1 = 0. Since s2s1 ̸= 0, r = 0.
(iii). ϕS is a monomorphism by (ii). If r/s ∈ S−1R, r/s = ϕS(rs

−1). Thus ϕS

is an isomorphism.

2



It is customary to identify an integral domain R with its image under ϕS

and consider R as a subring of its quotient field.

Theorem 4. Let S be a multiplicative subset of a commutative ring R and let
T be any commutative ring with identity. If f : R → T is a homomorphism
of rings such that f(s) is a unit in T for all s ∈ S, then there exists a unique
homomorphism of rings f̄ : S−1R → T such that f̄ ◦ ϕS = f . The ring S−1R is
completely determined up to isomorphism by this property.

Proof. Verify that f̄ : S−1R → T given by f̄(r/s) = f(r)f(s)−1 is a well-
defined homomorphism of rings such that f̄ ◦ ϕS = f . If g : S−1R → T is
another homomorphism such that g ◦ ϕS = f , then ∀s ∈ S, g(ϕS(s)) is a unit in
T . g(ϕS(s)

−1) = g(ϕS(s))
−1.

g(r/s) = g(ϕS(r)ϕS(s)
−1) = f(r)f(s)−1 = f̄(r/s)

Thus g = f̄ . Let C be the category whose objects are all (f, T ) where T is a
commutative ring with identity and f : R → T a homomorphism of rings such
that f(s) is a unit in T for every s ∈ S. Define a morphism in C from (f1, T1)
to (f2, T2) to be a homomorphism of rings g : T1 → T2 such that g ◦ f1 = f2.
Verify that C is a category and that a morphism g : (f1, T1) → (f2, T2) in
C is an equivalence iff g : T1 → T2 is an isomorphism of rings. Then by the
preceding work we have shown (ϕS , S

−1R) is a universal object in C , whence
S−1R is completely determined up to isomorphism.

Corollary 1. Let R be an integral domain considered as a subring of its quotient
field F . If E is a field and f : R → E a monomorphism of rings, then there is a
unique monomorphism of fields f̄ : F → E such that f̄ |R= f . In particular, any
field E1 containing R contains an isomorphic copy F1 of F with R ⊆ F1 ⊆ E1.

Proof. Let S = R \ {0} and apply the theorem to f : R → E to obtain a
homomorphism f̄ : F → E such that f̄ ◦ ϕS = f . f̄ is a monomorphism. Since
R is identified with ϕS(R), f̄ |R= f . Last statement follows when f : R → E1

is the inclusion map.

Theorem 5. Let S be a multiplicative subset of a commutative ring R.

(i) If I is an ideal in R, then S−1I is an ideal in S−1R.

(ii) If J is another ideal in R, then

S−1(I + J) = S−1I + S−1J

S−1(IJ) = (S−1I)(S−1J)

S−1(I ∩ J) = S−1I ∩ S−1J
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Proof. Note that
∑n

i=1 ci/s = (
∑n

i=1 ci)/s,
∑m

j=1 ajbj/s =
∑m

j=1(aj/s)(bjs/s)

t∑
k=1

ck/sk = (

t∑
k=1

cks1s2 · · · sk−1sk+1 · · · st)/s1s2 · · · st

Let a/s = b/s ∈ S−1I∩S−1J where a ∈ I, b ∈ J . Then ∃s′ ∈ S, s′a = s′b ∈ I∩J .

a/s = s′a/s′s = s′b/s′s = b/s

Thus a/s ∈ S−1(I ∩ J).

Theorem 6. Let S be a multiplicative subset of a commutative ring R with
identity and let I be an ideal of R. Then S−1I = S−1R iff S ∩ I ̸= ∅.

Proof. If s ∈ S ∩ I, 1 = s/s ∈ S−1I and hence S−1I = S−1R. Conversely,
if S−1I = S−1R, ϕ−1

S (S−1I) = R whence ∃a ∈ I, s ∈ S, ϕS(1) = a/s. Since
ϕS(1) = 1s/s, ∃s1 ∈ S, s2s1 = ass1. Thus S ∩ I ̸= ∅.

S−1I is called the extension of I in S−1R. If J is an ideal in S−1R, then
ϕ−1
S (J) is an ideal in R. ϕ−1

S (J) is called the contraction of J in R.

Lemma 1. Let S be a multiplicative subset of a commutative ring R with iden-
tity and let I be an ideal in R.

(i) I ⊆ ϕ−1
S (S−1I)

(ii) If I = ϕ−1
S (J) for some ideal J in S−1R, then S−1I = J . Every ideal in

S−1R is of the form S−1I for some ideal I in R.

(iii) If P is a prime ideal in R and S ∩ P = ∅, then S−1P is a prime ideal in
S−1R and ϕ−1

S (S−1P ) = P .

Proof. (i). If a ∈ I,∀s ∈ S, as ∈ I. Thus ϕS(a) = as/s ∈ S−1I whence
a ∈ ϕ−1

S (S−1I).
(ii). Since I = ϕ−1

S (J), every element of S−1I is of the form r/s where ϕS(r) ∈ J .
Thus r/s = (1R/s)(rs/s) ∈ J whence S−1I ⊆ J . Conversely, if r/s ∈ J , then
ϕS(r) = rs/s = (r/s)(s2/s) ∈ J whence r ∈ ϕ−1

S (J) = I. Thus r/s ∈ S−1I and
J ⊆ S−1I.
(iii). S−1P is an ideal such that S−1P ̸= S−1R by the previous theorem. If
(r/s)(r′/s′) ∈ S−1P then rr′/ss′ = a/t with a ∈ P, t ∈ S. ∃s1 ∈ S, s1trr

′ =
s1ass

′ ∈ P . Since s1t ∈ S and S ∩ P = ∅, rr′ ∈ P whence r ∈ P or r′ ∈ P .
Thus r/s ∈ S−1P or r′/s′ ∈ S−1P . Thus S−1P is prime. P ⊆ ϕ−1

S (S−1P ) by
(i). If r ∈ ϕ−1

S (S−1P ), then ϕS(r) ∈ S−1P . Thus rs/s = a/t with a ∈ P, t ∈ S.
∃s1 ∈ S, s1str = s1sa ∈ P . Since s1st ∈ S, S ∩ P = ∅, r ∈ P .

Theorem 7. Let S be a multiplicative subset of a commutative ring R with
identity. Then there is a one-to-one correspondence between the set U of prime
ideals of R which are disjoint from S and the set V of prime ideals of S−1R,
given by P 7→ S−1P .
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Proof. By the preceding lemma, U → V : P 7→ S−1P is injective. Let J be
a prime ideal of S−1R and let P = ϕ−1

S (J). Since S−1P = J , it suffices to
show that P is prime. If ab ∈ P, ϕS(a)ϕS(b) = ϕS(ab) ∈ J . Since J is prime,
ϕS(a) ∈ J or ϕS(b) ∈ J . Thus either a ∈ P or b ∈ P .

Let R be a commutative ring with identity and P a prime ideal of R. Then
S = R \ P is multiplicative. S−1R is called the localization of R at P and is
denoted RP . If I is an ideal in R, then the ideal S−1I in RP is denoted IP .

Theorem 8. Let P be a prime ideal in a commutative ring R with identity.

(i) There is a one-to-one correspondence between the set of prime ideals of R
contained in P and the set of prime ideals of RP given by Q 7→ QP .

(ii) The ideal PP in RP is the unique maximal ideal of RP .

Proof. The prime ideals contained in P are precisely those disjoint from S =
R \ P . (i) follows from the previous theorem. If M is a maximal ideal of RP ,
then M is prime. Whence M = QP for some prime ideal Q of R with Q ⊆ P .
But Q ⊆ P implies QP ⊆ PP . Since PP ̸= RP , we must have QP = PP . Thus
PP is the unique maximal ideal in RP .

Definition 2. A local ring is a commutative ring with identity which has a
unique maximal ideal.

Theorem 9. If R is a commutative ring with identity then the following con-
ditions are equivalent

(i) R is a local ring

(ii) All nonunits of R are contained in some ideal M ̸= R

(iii) The nonunits of R form an ideal

Proof. If I is an ideal of R and a ∈ I, then (a) ⊆ I. Thus I ̸= R iff I consists
only of nonunits. These facts imply (ii) =⇒ (iii) and (iii) =⇒ (i).
(i) =⇒ (ii). If a ∈ R is a nonunit, then (a) ̸= R. Thus (a) is contained in the
unique maximal ideal of R.
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