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We describe a construction known as the ring of fractions that has elements
of the form a/b. It is also known as the ring of quotients, but it sounds too
similar to the quotient ring, a completely different concept.

Definition 1. A nonempty subset S of a ring R is multiplicative provided that
a,beS = abes.

Theorem 1. Let S be a multiplicative subset of a commutative ring R. The
relation defined on the set R x S defined by

(r,s) ~ (r',s") <= 3s1 € S,s1(rs' —1's) =0

is an equivalence relation. Furthermore, if R has no zero divisors and 0 € R\ S,
then
(rys) ~(r',s") <= rs'=1's=0

Proof. (r,8) ~ (r,s) and (r,s) ~ (r',s') <= (r',;s') ~ (r,s) are obvious.
Assume (r,s) ~ (',8"),(r',8") ~ (r",s"”). Then Is1,s2 € S such that s;(rs’ —
r's) =0 and sy(r's” —r"'s’) = 0. Then

51528 (rs”" —1"s) =0

Thus (r,s) ~ (r”,s"”). If R has no zero divisors and 0 € R\ S, then Js; €
S, s1(rs’ —r's) = 0. Since s; is not a zero divisor, rs’ — r's = 0. O

Let S be a multiplicative subset of a commutative ring R and ~ the equiv-
alence relation from earlier. The equivalence class of (r,s) € R x S is denoted
r/s. The set of all equivalence classes is denoted S~!R. Verify that

(i) r/s=71"/s < Fs1 € 5,s1(rs' —1's) =0
(ii) tr/ts=r/sforall r € R,t,s € S
(iii) If 0 € S, then S™!R consists of a single equivalence class.

Theorem 2. Let S be a multiplicative subset of a commutative ring R and
let STIR be the set of equivalence classes under (r,s) ~ (r',s') <= s €
S, s1(rs’ —r's) =0.

(i) STIR is a commutative ring with identity, where addition and multiplica-
tion is defined by

r/s+r'/s' = (rs' +1's)/ss', (r/s)(r')s') =rr"/ss



(ii) If R is a nonzero ring with no zero divisors and 0 ¢ S, ST1R is an integral
domain.

(i1i) If R is a nonzero ring with no zero divisors and S is the set of all nonzero
elements of R, then S™'R is a field.

Proof. () lf /s =r1/s1,1'/s’ =1/, then sq, s3 € S such that
sa(rs; —ris) =0, s3(r's) —ris’) =0
Multiply the first equation by s3s’s] and the second by soss;. Add to get
s283[(rs’ +1's)s1s) — (r18] +ris1)ss’] =0

Therefore (rs’ +1's)/ss’ = (r18}] + r{s1)/s18}. If we instead multiply the first
equation by s;s3r’ and the second by ssorq, then add, we get

sa83[rr’sysy —rirjss’| =0

Thus r7'/ss’ = r1r]/s1s}. Hence addition and multiplication on S~!R is well-
defined.

(ii). If R has no zero divisors and 0 ¢ S, then r/s = 0/s <= r = 0. Thus
(r/s)(r'/s') =0 <= rr’ =0. Since rr’/ =0 iff r =0 or ' = 0, it follows that
SR is an integral domain.

(iii). If » # 0, the multiplicative inverse of r/s is s/r. O

The ring S™!R is called the ring of fractions of R by S. When R is an integral
domain and S the set of all nonzero elements, S™!'R is called the fraction field
or quotient field of R. If R is a nonzero commutative ring and S is the set of
all elements of R that are not zero divisors of R, then S™'R is called the total
ring of fractions of R.

Theorem 3. Let S be a multiplicative subset of a commutative ring R.

(i) The map ¢s : R — S™LR given by r + rs/s for any s € S is a well-defined
homomorphism of rings such that ¢s(s) is a unit in S~ R for every s € S.

(i) If0 ¢ S and S contains no zero divisors, then ¢g is a monomorphism. In
particular, any integral domain may be embedded in its quotient field.

(i1i) If R has an identity and S consists of units, then ¢g is an isomorphism.
In particular, the total ring of fractions of a field F' is isomorphic to F.

Proof. (i). If s,s' € S, then rs/s = rs’/s’ whence ¢g is well-defined. Verify that
¢s is a ring homomorphism and that Vs € S, s/s? is the multiplicative inverse
of s2/s = ¢5(s).

(ii). If ps(r) = 0,3s1 € S,7s%s; = 0. Since s?s; # 0, r = 0.

(iii). ¢g is a monomorphism by (ii). If r/s € STIR, r/s = ¢5(rs~!). Thus ¢g
is an isomorphism. U



It is customary to identify an integral domain R with its image under ¢g
and consider R as a subring of its quotient field.

Theorem 4. Let S be a multiplicative subset of a commutative ring R and let
T be any commutative ring with identity. If f : R — T is a homomorphism
of rings such that f(s) is a unit in T for all s € S, then there exists a unique
homomorphism of rings f : ST'R — T such that fo¢g = f. The ring S™'R is
completely determined up to isomorphism by this property.

Proof. Verify that f : ST'R — T given by f(r/s) = f(r)f(s)™! is a well-
defined homomorphism of rings such that fo¢s = f. If g : ST'R — T is
another homomorphism such that go ¢g = f, then Vs € S, g(¢s(s)) is a unit in

T. g(ps(s)™) = g(os(s) L.
9(r/s) = g(¢s(r)ds(s) ™) = f(r)f(s) " = [(r/s)

Thus g = f. Let € be the category whose objects are all (f,T) where T is a
commutative ring with identity and f : R — T a homomorphism of rings such
that f(s) is a unit in T for every s € S. Define a morphism in % from (f1,77)
to (f2,T2) to be a homomorphism of rings g : Ty — T3 such that go f; = fo.
Verify that € is a category and that a morphism g : (f1,71) — (f2,T2) in
% is an equivalence iff g : 77 — T is an isomorphism of rings. Then by the
preceding work we have shown (¢g, S~'R) is a universal object in ¢, whence
S7!R is completely determined up to isomorphism. O

Corollary 1. Let R be an integral domain considered as a subring of its quotient
field F. If E is a field and f : R — E a monomorphism of rings, then there is a
unique monomorphism of fields f : F — E such that f |g= f. In particular, any
field Ey containing R contains an isomorphic copy Fy of F with R C Fy C Ej.

Proof. Let S = R\ {0} and apply the theorem to f : R — E to obtain a
homomorphism f : F' — E such that fo¢g = f. f is a monomorphism. Since
R is identified with ¢5(R), f |r= f. Last statement follows when f : R — E;
is the inclusion map. O

Theorem 5. Let S be a multiplicative subset of a commutative ring R.
(i) If I is an ideal in R, then S™'I is an ideal in S™'R.
(ii) If J is another ideal in R, then
SHI+J)=8"1'T1+S"'J

S=HIJ) = (S7')(S~L)
STHINnJ)=8"1InsS'J



Proof. Note that Y77 ¢;/s = (3072, i) /s, 05y azbi/s = 377 (a;/s)(bjs/s)
t t
D er/sk =D cks152- - Sko1ki1-c8)/s152+ 0 8t
k=1 k=1

Leta/s =b/s € STHINS™1J wherea € I,b € J. Then 3s’ € S,s'a = s'b € INJ.
a/s=sa/s's=35'b/s's=1b/s
Thus a/s € S7HINJ). O

Theorem 6. Let S be a multiplicative subset of a commutative ring R with
identity and let I be an ideal of R. Then S™'I =S 'R iff SNI#0.

Proof. If s € SN1I,1=s/s € S7'I and hence S~'I = S~'R. Conversely,
if ST = SR, ¢5'(S7'I) = R whence Ja € I,s € S,¢5(1) = a/s. Since
¢s(1) = 1s/s, 51 € S, 5281 = assy. Thus SN I # 0. O

ST is called the extension of I in S™'R. If J is an ideal in S™'R, then
¢35 (J) is an ideal in R. ¢g'(J) is called the contraction of .J in R.

Lemma 1. Let S be a multiplicative subset of a commutative ring R with iden-
tity and let I be an ideal in R.

(i) 1 Cog'(S~H)

(i) If I = ¢§1(J) for some ideal J in ST'R, then S™'I = J. Ewvery ideal in
STIR is of the form S™'I for some ideal I in R.

(iii) If P is a prime ideal in R and SN P = (), then S~1P is a prime ideal in
STIR and ¢g'(STIP) = P.

Proof. (i). If a € I,Vs € S,as € I. Thus ¢g(a) = as/s € S~'I whence
a € pgt(STH).

(ii). Since I = ¢g'(J), every element of S~'1 is of the form /s where ¢g(r) € .J.
Thus r/s = (1g/s)(rs/s) € J whence S~'I C J. Conversely, if r/s € J, then
¢s(r) =rs/s = (r/s)(s?/s) € J whence r € ¢g'(J) = I. Thus r/s € S™'I and
JC ST

(iii). S~!P is an ideal such that S~'P # S~!R by the previous theorem. If
(r/s)(r'/s') € STLP then r1'/ss' = a/t with a € P,t € S. 3s1 € S, s1trr’ =
s1ass’ € P. Since sit € S and SNP =0, v’ € P whence r €¢ P or v’ € P.
Thus r/s € ST'P or //s' € ST'P. Thus S7'P is prime. P C ¢5'(S™'P) by
(i). If r € ¢5' (ST1P), then ¢g(r) € ST'P. Thus rs/s = a/t with a € P,t € S.
ds; € 5, systr = sysa € P. Since s1st € S,SNP =0,r € P. O

Theorem 7. Let S be a multiplicative subset of a commutative ring R with
identity. Then there is a one-to-one correspondence between the set 4 of prime
ideals of R which are disjoint from S and the set U of prime ideals of S™'R,
given by P+ S™1P.



Proof. By the preceding lemma, 4 — U : P + S™!P is injective. Let .J be
a prime ideal of S™'R and let P = ¢g'(J). Since S™'P = J, it suffices to
show that P is prime. If ab € P, ¢s(a)ps(b) = ¢ps(ab) € J. Since J is prime,
¢s(a) € J or ¢g(b) € J. Thus either a € P or b € P. O

Let R be a commutative ring with identity and P a prime ideal of R. Then
S = R\ P is multiplicative. S™!R is called the localization of R at P and is
denoted Rp. If I is an ideal in R, then the ideal S™'I in Rp is denoted Ip.

Theorem 8. Let P be a prime ideal in a commutative ring R with identity.

(i) There is a one-to-one correspondence between the set of prime ideals of R
contained in P and the set of prime ideals of Rp given by Q — Qp.

(i) The ideal Pp in Rp is the unique mazimal ideal of Rp.

Proof. The prime ideals contained in P are precisely those disjoint from S =
R\ P. (i) follows from the previous theorem. If M is a maximal ideal of Rp,
then M is prime. Whence M = @Qp for some prime ideal @) of R with Q C P.
But @ C P implies Qp C Pp. Since Pp # Rp, we must have Qp = Pp. Thus
Pp is the unique maximal ideal in Rp. O

Definition 2. A local ring is a commutative ring with identity which has a
unique maximal ideal.

Theorem 9. If R is a commutative ring with identity then the following con-
ditions are equivalent

(i) R is a local ring
(i) All nonunits of R are contained in some ideal M # R
(i1i) The nonunits of R form an ideal
Proof. If I is an ideal of R and a € I, then (a) C I. Thus I # R iff I consists
only of nonunits. These facts imply (ii) = (iii) and (iii) = (i).
n

(i) = (ii). If @ € R is a nonunit, then (a) # R. Thus (a) is contained in the
unique maximal ideal of R. O



