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Definition 1. A ring is a nonempty set R together with two binary operations
(+,-) such that

(i) (R,+) is an abelian group
(ii) Ya,b,c € R, (ab)c = a(be)
(111) Ya,b,c € R,a(b+c) =ab+ac, (a+b)c=ac+bc

If in addition, multiplication is commutative, R is said to be a commutative
ring. If R contains a multiplicative identity element 1g, then R is said to be
a ring with identity. The additive identity element of a ring is called the zero
element, denoted 0.

Theorem 1. Let R be a ring. Then Va,b,a;,b; € R,n € Z,
(i) 0a =a0 =0
(ii) (—a)b = a(~b) = —(ab)
(#ii) (—a)(—b) = ab
(iv) (na)b = a(nb) = n(ab)

(v) (37 ai) (E;'ll bj) = DI ey aib;

Definition 2. A nonzero element a in a ring R is said to be a left (resp. right)
zero dwisor if there exists a nonzero b € R such that ab =10 (resp. ba =0). A
zero divisor is an element of R which is both a left and right zero divisor.

It is easy to verify that a ring R has no zero divisors iff the left and right
cancellation laws hold in R.

Definition 3. An element a in a ring R is said to be left invertible iff dc €
R,ca = 1r. Right invertible iff 3¢ € R,ac = 1r. The element c is called a
left inverse or right inverse of a. An element a € R that is both left and right
invertible is said to be invertible or a unat.

The set of units forms a group under multiplication.

Definition 4. A commutative ring R with identity 1z # 0 and no zero divisors
is called an integral domain. A ring D with identity 1p # 0 in which every
nonzero element is a unit is called a division ring. A field is a commutative
division ring.



Theorem 2. Let R be a ring with identity, n a positive integer, and a, b, ay, as, - - -

R.
(i) If ab =ba, then (a+b)" =3}, (})a"b"=*
(i1) If a;a; = aja; for alli,j, then

S : n! i1 02 is

11,82, ,0s
. . . S .
Where the sum is over nonnegative integers such that ijl i; =n.

Proof. Use that (}) + (kil) = (Zﬁ) for k < n. Use induction. O

Definition 5. Let R and S be rings. A function f : R — S is a homomorphism
of rings provided that Ya,b € R, f(a+b) = f(a) + f(b) and f(ab) = f(a)f()).
The kernel of f isker f ={r € R| f(r) =0}. The image of f isIm f = {s €
S| 3r e R,s= f(r)}. We do not require that a homomorphism of rings maps
1r to 1g.

Definition 6. Let R be a ring. If there is a least positive integer n such that
Va € R,na =0, then R is said to have characteristic n. If no such n exists, R
s said to have characteristic zero.

Theorem 3. Let R be a ring with identity 1g and characteristic n > 0.

(i) If ¢ : Z — R is given by m — mlg, then ¢ is a homomorphism of rings
with kernel (n) = {kn | k € Z}

(i) n is the least positive integer such that nlg = 0.

(i1i) If R has no zero divisors, then n is prime.

Proof. (ii). If k is the least positive integer such that klp = 0, Va € R, ka =

k(lRCL) =0.
(iii). n=4kr, 1 <k,r <n, then 0 =nlgr = (klg)(rlg) implies that k1r =0
or r1g = 0, a contradiction. O

Theorem 4. FEvery ring R may be embedded in a ring S with identity. The
ring S may be chosen to be characteristic zero or the same characteristic as R.

Proof. Let S = R@® Z and define multiplication in S by
(r1,k1)(re, ko) = (rire + kary + kire, kikz)

S is a ring with identity (0, 1) and characteristic zero and the map R — S given
by r + (r,0) is a ring monomorphism. If char R = n > 0, use a similar proof
with S = R & Z,, and multiplication defined by

(r1,k1)(ro, ko) = (rire + kary + k17, kiks)
Then char S = n. O
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Definition 7. Let R be a ring and S a nonempty subset of R that is closed under
addition and multiplication in R. If S is itself a ring under these operations,
then S is called a subring of R. A subring I of a Ting R is a left ideal provided
that

reRzxel — rxel

I is a right ideal provided that
reRrxel = axrel

I is an ideal iff it is both a left and right ideal.

If R is any ring, the center of R is the set C = {c € R|Vr € R,cr =rc}. C
is easily a subring of R but may not be an ideal. A left ideal I of R that is not
0 or R is called a proper left ideal. Observe that if R has an identity 1 and I
isanideal of R, I = Riff 1z € I. A nonzero ideal I of R is proper iff I contains
no units of R. A division ring D has no proper left or right ideals since every
nonzero element of D is a unit. The ring of n x n matrices over a division ring
has proper left and right ideals, but no proper ideals.

Theorem 5. A nonempty subset I of a ring R is a left [resp. right] ideal iff
Ya,b e I,Vr € R,

(i) a,bel = a—bel

(ii)) aeI,re R = ra €l [resp. ar € I]
Corollary 1. Let {A4; | i € I} be a family of left ideals in a ring R. Then
Nicr Ai is a left ideal.

Definition 8. Let X be a subset of a ring R. Let {A; | i € I} be the family
of all [left] ideals in R which contain X. Then (o, A; is called the [left] ideal
generated by X. This ideal is denoted (X).

The elements of X are called generators of the ideal (X). If X = {x1,z9, -+ , 2}
then the ideal (X) is denoted (z1, 29, - ,x,) and said to be finitely generated.
An ideal (z) generated by a single element is called a principal ideal. A principal
ideal ring is a ring in which every ideal is principal. A principal ideal domain is
an integral domain and a principal ideal ring.

Theorem 6. Let R be a ring, a € R and X C R.
(i) (a) ={ra+as+na+3y - rias;|r,s,r,s € Rnel}
(ii) If R has an identity, then (a) = {>_,_, rias; | ri,s; € R,n € N}
(i1i) If a is in the center of R, then (a) = {ra+na|r € R,n € Z}
(iv) Ra = {ra|r € R} is a left ideal in R which may not contain a.

(v) If R has an identity and a is in the center of R, then Ra = (a) = aR.



(vi) If R has an identity and X is in the center of R, then the ideal (X)) consists
of all finite sums r1a1 + -+ -+ rpan, 7 € Rya; € X.

Let Ay, Ao, .-+, A, be nonempty subsets of a ring R. Denote by A; + As +
o+ Ay ={a1+as+---+a,|a; €A;}. If Aand B are nonempty subsets of
R let AB denote {a1by + -+ axb, | n € Nya; € A,b; € B}. More generally,
let A1 As--- A, denote the set of all finite sums of the form ajas - --a,. In the
special case when all are the same set A, denote it by A™.

Theorem 7. Let A, Ay, As, -, Ay, B,C be [left] ideals in a ring R.
(i) A1+ As+---+ A, and A1As--- A, are [left] ideals
(ii)) (A+B)+C=A+(B+C)

(i1i) (AB)C = ABC = A(BC)

(iv)
B(A; + Ay + -+ Ay) = BA; + BAy + -+ + BA,

(A + A2+ +A,)C=A1C+ AC+---+ A,C

Let R be aring and I an ideal of R. Since the additive group of R is abelian,
I is a normal subgroup. R/I is a well-defined quotient group.

Theorem 8. Let R be a ring, I an ideal of R. The additive quotient group R/I
with mulitplication given by (a+1)(b+1) = ab+1 is a ring. If R is commutative
or has an identity, the same is true of R/I.

Isomorphism theorems also exist for rings.

Theorem 9. If f : R — S is a homomorphism of rings, then the kernel of f
is an ideal in R. Conversely, if I is an ideal in R, then the map m : R — R/I
giwven by r — r + I is an epimorphism of rings with kernel I.

Proof. ker f is an additive subgroup of R. If x € ker f,r € R, f(rz) = f(r)f(z) =
f(r)0 = 0 whence ra € ker f. Thus ker f is an ideal. 7 is an epimorphism of
groups with kernel I. w(ab) =ab+1 = (a+I)(b+ 1) = n(a)n(b). 7 is also an
epimorphism of rings. U

Theorem 10. If f : R — S is a homomorphism of rings and I is an ideal
of R contained in the kernel of f, then there is a unique homomorphism of
rings f : R/I — S such that f(a +1) = f(a) for alla € R. imf = im f
and ker f = ker f = ker f/I. f is an isomorphism iff f is an epimorphism and
I =ker f.

Proof. Let b€ a+ 1. Then b—a € I and f(b) = f(b—a+a) = f(a). Thus f
has the same effect on every element of a +I. The map f : R/I — S defined by
f(a+1) = f(a) is well-defined. Since f is a homomorphism, f is easily shown to
be a homomorphism of rings. f is unique since it is completely determined by
f. Clearly im f =im f and a + I € ker f iff a € ker f. ker f = ker f/I. f is an
epimorphism iff f is an epimorphism. f is a monomorphism iff I = ker f. U



Corollary 2 (First Isomorphism theorem). If f : R — S is a homomorphism
of rings, then f induces an isomorphism of rings R/ ker f = im f.

Corollary 3. If f : R — S is a homomorphism of rings, I an ideal of R
and J an ideal of S such that f(I) C J, then f induces a homomorphism of
rings f : R/T — S/J given by a + Imapstof(a) + J. f is an isomorphism iff
imf+J=2S and f~Y(J) C I. In particular, if f is an epimorphism such that
f(I)=J and ker f C I, then f is an isomorphism.

Proof. wof : R — S/J is a homomorphism of rings and I C f~1(J) = ker(wo f).
There is a unique homomorphism of rings f : R/I — S/.J such that f(a+1I) =
fla)+J. im f =im(m o f), ker f = ker(mwo f)/I. im f = S/J iff im f + J = S.
ker f = 0 iff ker(7w o f) = I iff f~1(J) C I. Note that f(I) = J and ker f C I
implies f~1(J) C I. O

Theorem 11. (i) Isomorphism of rings [/(INJ) = (I + J)/J

(i) If I C J, then J/I is an ideal in R/I and there is an isomorphism of rings
(R/D)/(J/I)=R]J.

(i) is the second isomorphism theorem and (ii) is the third isomorphism
theorem.

Theorem 12 (Fourth isomorphism theorem). If I is an ideal in a ring R, then
there is a one-to-one correspondence between the set of all ideals of R which
contain I and the set of all ideals of R/I, given by J — J/I.

Definition 9. An ideal P in a ring R is said to be prime iff P # R and for
any ideals A, B in R

ABCP — ACPVBCP
Theorem 13. If P is an ideal in a ring R such that P # R and Ya,b € R
abe P = acPVbecP

then P is prime. Conversely, if P is prime and R is commutative, then P
satisfies the above condition.

Proof. Suppose A and B are ideals such that AB C P and Ja € A\ P. Vb €
B,abe AB C P whencea € Porbe P. Thus b€ P so BC P and P is prime.
Conversely, if P is a prime ideal, R is commutative, and ab € P, then (ab) C P.
Note that (a)(b) C (ab) whence (a)(b) C P. Either (a) C P or (b) C P, whence
ac€ PorbeP. O

Theorem 14. In a commutative ring R, with identity 1z # 0 an ideal P is
prime iff R/ P is an integral domain.



Proof. If P is prime, since P # R, 1g + P # P. R/P has no zero divisors since
(a4 P)(b+ P) = P implies ab € P implies a € P or b € P implies a+ P = P or
b+ P = P. Therefore R/P is an integral domain. If R/P is an integral domain,
then 1 + P # 0+ P whence 1g ¢ P. Thus P # R. Also, ab € P implies
(a+ P)(b+ P)= P impliesa € Porbe P. O

Definition 10. An ideal [resp. left] M in a ring R is said to be maximal iff
M # R and for every [resp. left] ideal N such that M C N C R, either M = N
or N =R.

Theorem 15. In a nonzero ring R with identity, maximal [left] ideals will al-
ways exist. In fact every [left] ideal in R except R is contained in some mazimal

[left] ideal.

Theorem 16. If R is a commutative ring such that R? = R, then every mazimal
ideal M in R is prime.

Proof. Suppose ab € M but a« € M,b & M. M + (a) and M + (b) properly
contains M. By maximality, M + (a) = R = M + (b). Since R is commutative
and ab € M, (a)(b) C (ab) C M.

R=R?*= (M + (a))(M + (b)) = M? + (a)M + M(b) + (a)(b) C M
This contradicts that M # R. Thus a € M or b € M, whence M is prime. [
In particular, R2 = R whenever R has an identity.

Theorem 17. Let M be an ideal in a ring R with identity 1g # 0.

(i) If M is mazimal and R is commutative, then R/M is a field.

(ii) If R/M is a division ring, then M is maximal.
Proof. (i). If M is maximal, then M is prime. Whence R/M is an integral
domain. We must show if a + M # M, a + M has a multiplicative inverse in

R/M. M is properly contained in M + (a).Since M is maximal, M + (a) = R.
lr=m+raforsomeme M, reR. 1g—ra=m¢€ M.

lg+M=ra+M=(r+M)a+ M)

Thus r 4+ M is a multiplicative inverse of a + M in R/M.

(ii). If R/M is a division ring, then 15 + M # M whence 1gr ¢ M and M # R.
If N is an ideal such that M C N, let a € N\ M. a + M has a multiplicative
inverse say b+ M. ab+ M =1p+ M. ab—1gp € M. Buta € N and M C N
implies that 1z € N. Thus N = R. Therefore M is maximal. O

Corollary 4. The following conditions on a commutative ring R with identity
1r # 0 are equivalent:

(i) R is a field.



(ii) R has no proper ideals.

(#4i) 0 is a maximal ideal in R

(iv) Every nonzero homomorphism of rings R — S is a monomorphism.
Proof. R = R/0 is a field iff 0 is maximal. 0 is maximal iff R has no proper
ideals. O
Theorem 18. Let Ay, Ay, -+, A, be ideals in a ring R such that

(i) Ay + Ay +---+A, =R

(1)) V1<k<n, Agn(Ai+ -+ A1+ A1 +--+A4,)=0
Then R= Ay x Ay X --- X A,,.

Let A be an ideal and a,b € R. a is said to be congruent to b modulo A
denoted a =b (mod A) iff a — b € A.

Theorem 19 (Chinese remainder theorem). Let Ay, Aa, -+, A, be ideals in a
ring R such that R* + A; = R for alli and A; + A; = R for all i # j. If
b1,b2, -+ ,b, € R then there exists b € R such that

Vi,b=b; (mod A;)

Furthermore b is uniquely determined up to congruence modulo the ideal A1 N
Asn---NA,.

Proof. Since Ay + A, = Rand A; + A3 = R,
R* = (A; + A)) (AL + A3) C AL + AyA3 C Ay + Ay N A3

Since R = Al —|—R2, R = Al +R2 - Al +A2ﬁA3 - R. Thus R = Al +A2ﬁA3.
Assume that R = A; + A, N A3N---NAp_;. Then R?2 = (A; + A2 N A3z N
"'ﬂAk_l)(A1+Ak) C A +AsNnAsN---N A, and hence R = R2+A1 -
Ay +AsnN---NAg C R Thus R= A; + Ao N --- N Ag and the induction step
is proved. R = A; + Ao NAsN---NA,. Similarly, R = Ay + ﬂ#k A;. Thus
Jay € Ay, 7 € ﬂ#k A; such that by = a + ri. Note that r;, = by (mod Ay)
and 1, =0 (mod A;) for i £ k. Let b=1ry +ry+---+r,. Verify that bequivby,
(mod Ay). Finally, if ¢ € R is such that ¢ = b; (mod A;) for each 4, then b = ¢
(mod A;) for each i. Whence b —c € (i, A;. O

Corollary 5. If Ay, As, -+, A, areideals in a ring R, then there is a monomor-
phism of rings

HR/(AlﬂAzﬂﬂA,,)%R/AlxR/AzxxR/An

If R?+ A; = R for all i and fori # j, A; + Aj = R, then 0 is an isomorphism.



Proof. Let m; : R — R/A; be the canonical epimorphism. The 7; induces a
homomorphism 6y : R — R/A; x R/As x -+ X R/A,, with 01(r) = (r + Ay, r +
Ag, - ,r+A,). kerf; = AyNAyN---NA,. Thus 6; induces a monomorphism
0:R/(AiNAsN---NA,) = R/A1 x R/As X -+ x R/A,. If the hypotheses of the
Chinese remainder theorem are satisfied, for (by + A1,be + Ag,--- , b, + A,,) €
R/A; X RJAy x -+ x RJA,, there exists b € R such that b = b; (mod A4;) for
all . Thus 6(b+ (i_y A;) = (b+ A1, b+ Ao, -+ b+ Ay) = (by + Ay, bo +
As, - by + Ay). Whence 6 is an isomorphism. O

Definition 11. A nonzero element a of a commutative ring R is said to divide
an element b € R (notated a | b) iff v € R,ax = b. Elements a,b of R are said
to be associates iff a | b and b | a.

Theorem 20. Let a,b,u € R where R is a commutative ring with identity.
(i) alb <= () C (@)
(i) a and b are associates iff (a) = (b)
(iii) w is a unit iff u | r for allT € R
(v) w is a unit iff (u) = R
(v) The relation “a is an associate of b” is an equivalence relation on R.
(vi) If a = br withr € R a unit, then a and b are associates. If R is an integral
domain, the converse is true.
Definition 12. Let R be a commutative ring with identity. An element ¢ € R
1s irreducible iff
(i) ¢ is a nonzero nonunit.
(i) ¢ =ab = a orb is a unit
An element p € R is prime iff
(i) p is a nonzero nonunit

(i) p|ab = plaV p|b

Theorem 21. Let p and c be nonzero elements in an integral domain R.
(i) p is prime iff (p) is a nonzero prime ideal

(ii) c is irreducible iff (c) is mazimal in the set S of all proper principal ideals
of R.

(i4i) Every prime element of R is irreducible.

(iv) If R is a principal ideal domain, then p is prime iff p is irreducible.



(v) Every associate of an irreducible [resp. prime] element of R is irreducible
[resp. prime]

(vi) The only divisors of an irreducible element of R are its associates and the
units of R.

Proof. (i). If p is prime, ab € (p) <= plab = plaVp|b < a €
(p) Vb € (p). If (p) is a nonzero prime ideal, p | ab <= ab € (p) = a €
(p)Vbe(p) < plavplb

(ii). If ¢ is irreducible, then (c) is a proper ideal of R. If (¢) C (d), then ¢ = dz.
Since ¢ is irreducible, d or z is a unit. Hence (¢) is maximal. Conversely, if (c)
is maximal in S, then ¢ is a nonzero nonunit in R. If ¢ = ab, then (¢) C (a)
whence (¢) = (a) or (a) = R. If (a) = R, then a is a unit. If (¢) = (a), then
a = cy hence ¢ = ab = cyb. Thus b is a unit. Therefore b is irreducible.

(iii). fp=ab, plaVp|b. Say p|a. Then px = a and p = ab = pxb. Thus b
is a unit.

(iv). If p is irreducible, then (p) is maximal, hence prime, thus p is prime.

(v). If ¢ is irreducible, d is an associate of ¢, ¢ = du where w is a unit. If d = ab,
then ¢ = abu whence a is a unit or bu is a unit. If bu is a unit, so is b hence d
is irreducible.

(vi). If ¢ is irreducible and a | ¢, then (¢) C (a) whence (¢) = (a) or (a) = R.
Thus a is an associate of ¢ or a unit. O

Definition 13. An integral domain R is a unique factorization domain iff

(i) Every nonzero unit element a of R can be written a = cica -+ ¢, with
C1,Co, -+, Cp trreducible.

(i) If a = c1ea-- - cp,a = dids - - - dim, ¢i,d; irreducible, then n = m and for
some permutation o of {1,2,---,n}, ¢; and dy(;y are associates for every
i.

Lemma 1. If R is a principal ideal ring and (a1) C (az) C -+ is a chain of
ideals in R, then for some integer n, (a;) = (ay) for all j > n.

Proof. Let A = |J;5,(a;). A is an ideal. Let A = (a). 3n,a € (a,). Thus
(a) = (an). 0

Theorem 22. FEvery principal ideal domain is a unique factorization domain.

Proof. Let R be PID and S be the set of all nonzero nonunit elements of R
which cannot be factored as a finite product of irreducible elements. Suppose
S is not empty and a € S. Then (a) is a proper ideal and is contained in a
maximal ideal (¢). ¢ is irreducible. ¢ | a. Therefore, it is possible to choose
for each a € S an irreducible divisor ¢, of a. Since R is an integral domain, ¢,
uniquely determines a nonzero x, € R such that c,x, = a. We claim z, € S.
If z, were a unit, a would be irreducible hence x, is not a unit. If z, were not
in S, then x, has a factorization as a product of irreducibles, whence a also



does. Thus z, € S. We claim (a) C (z,). Since (a) = (x,) implies z, = ay for
some y € R whence a = z,¢, = ayc,. Contradicting that ¢, is irreducible and
hence a nonunit. The function f : S — S given by f(a) = z, is well defined.
By the recursion theorem, there is a function ¢ : N — S such that ¢(0) = q,
¢(n+1) = f(é(n)). Denote ¢p(n) = a,. There is an ascending chain of ideals
(a) C (a1) C (az) C --- contradicting the previous lemma. Thus S must be
empty. Finally, if cico-- ¢, = a = dids - - d,, then ¢q divides some d;. Since
c1 is not a unit, ¢; is associate to d;. We can cancel ¢; and d; (with a factor
of a unit), and proceed by induction to canceling the associates. If n # m, this
would imply that some of the ¢; or d; are units, a contradiction. O

Definition 14. Let R be a commutative ring. R is a Euclidean ring iff there is
a function ¢ : R\ {0} — N such that

(i) If a,b € R, ab # 0, then ¢(a) < ¢(ab)
(i) Ifa,b € R,b#0,3q,7 € R,a = gb+r withr =0 orr # 0 and ¢(r) < ¢(b).
A Euclidean ring which is an integral domain is called a Fuclidean domain.

Theorem 23. Every FEuclidean ring R is a principal ideal ring with identity.
Every Euclidean domain is a unique factorization theorem.

Proof. If I is a nonzero ideal in R, choose a € I such that ¢(a) is the least
integer in the set {¢(x) | © # 0,2 € I}. If b € I, then b = aq + r with r =0

or r # 0 and ¢(r) < ¢(a). r € I so that r = 0, whence b = aq. I = (a). R
is a principal ideal ring. Since R itself is an ideal, R = Ra for some a € R.
Jde € Ria=ea=ae. Ifbe R,3xz € R,b = za. Thus be = zae = za = b.
Whence e is a multiplicative identity for R. O

Definition 15. Let X be a nonempty subset of a commutative ring R. An
element d € R is a greatest common divisor of X provided

(i) Vae X,d|a
(i) Va € X,c|la = c|d
Greatest common divisors need not exist. When it exists, it may not be
unique. However, two greatest common divisors are associates by (ii). Further-
more, any associate of a greatest common divisor is a greatest common divisor.

If R has an identity and a1, as, - ,a, have 1z as a greatest common divisor,
then a1, as, - ,a, are said to be relatively prime.

Theorem 24. Let aj,as,--- ,a, be elements of a commutative ring R with
identity.

(i) d € R is a greatest common divisor of {ai,as, -+ ,an} such that d =
riay + roas + - -+ rpan for somer; € R iff (d) = (a1) + (a2) + -+ (an)
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(i) If R is a principal ideal Ting, then a greatest common divisor of a1, as, -+ ,an
exists and every one is of the form riay + roas + -+ + rpan,

(i1i) If R is a unique factorization domain, then there exists a greatest common
divisor of a1, a9, ,ap.

Proof. (i). Routinely follows. (ii) follows from (i). (iii). Each a; has a fac-

torization a; = ¢; "'ey 7o, " with ¢q,- -+, ¢ distinet irreducible elements
ki k k : :

and each m;; > 0. d = ¢j'c3? -+ - ¢f* where k; = min{mq;,ma;, -+ ,mp;} is a

greatest common divisor. O
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