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Definition 1. A ring is a nonempty set R together with two binary operations
(+, ·) such that

(i) (R,+) is an abelian group

(ii) ∀a, b, c ∈ R, (ab)c = a(bc)

(iii) ∀a, b, c ∈ R, a(b+ c) = ab+ ac, (a+ b)c = ac+ bc

If in addition, multiplication is commutative, R is said to be a commutative
ring. If R contains a multiplicative identity element 1R, then R is said to be
a ring with identity. The additive identity element of a ring is called the zero
element, denoted 0.

Theorem 1. Let R be a ring. Then ∀a, b, ai, bj ∈ R,n ∈ Z,

(i) 0a = a0 = 0

(ii) (−a)b = a(−b) = −(ab)

(iii) (−a)(−b) = ab

(iv) (na)b = a(nb) = n(ab)

(v) (
∑n

i=1 ai)
(∑m

j=1 bj

)
=
∑n

i=1

∑m
j=1 aibj

Definition 2. A nonzero element a in a ring R is said to be a left (resp. right)
zero divisor if there exists a nonzero b ∈ R such that ab = 0 (resp. ba = 0). A
zero divisor is an element of R which is both a left and right zero divisor.

It is easy to verify that a ring R has no zero divisors iff the left and right
cancellation laws hold in R.

Definition 3. An element a in a ring R is said to be left invertible iff ∃c ∈
R, ca = 1R. Right invertible iff ∃c ∈ R, ac = 1R. The element c is called a
left inverse or right inverse of a. An element a ∈ R that is both left and right
invertible is said to be invertible or a unit.

The set of units forms a group under multiplication.

Definition 4. A commutative ring R with identity 1R ̸= 0 and no zero divisors
is called an integral domain. A ring D with identity 1D ̸= 0 in which every
nonzero element is a unit is called a division ring. A field is a commutative
division ring.
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Theorem 2. Let R be a ring with identity, n a positive integer, and a, b, a1, a2, · · · , as, b1, b2, · · · , bn ∈
R.

(i) If ab = ba, then (a+ b)n =
∑n

k=0

(
n
k

)
akbn−k

(ii) If aiaj = ajai for all i, j, then(
s∑

i=1

ai

)n

=
∑

i1,i2,··· ,is

n!

(i1)!(i2)! · · · (is)!
ai11 ai22 · · · aiss

Where the sum is over nonnegative integers such that
∑s

j=1 ij = n.

Proof. Use that
(
n
k

)
+
(

n
k+1

)
=
(
n+1
k+1

)
for k < n. Use induction.

Definition 5. Let R and S be rings. A function f : R → S is a homomorphism
of rings provided that ∀a, b ∈ R, f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b).
The kernel of f is ker f = {r ∈ R | f(r) = 0}. The image of f is Im f = {s ∈
S | ∃r ∈ R, s = f(r)}. We do not require that a homomorphism of rings maps
1R to 1S.

Definition 6. Let R be a ring. If there is a least positive integer n such that
∀a ∈ R,na = 0, then R is said to have characteristic n. If no such n exists, R
is said to have characteristic zero.

Theorem 3. Let R be a ring with identity 1R and characteristic n > 0.

(i) If ϕ : Z → R is given by m 7→ m1R, then ϕ is a homomorphism of rings
with kernel ⟨n⟩ = {kn | k ∈ Z}

(ii) n is the least positive integer such that n1R = 0.

(iii) If R has no zero divisors, then n is prime.

Proof. (ii). If k is the least positive integer such that k1R = 0, ∀a ∈ R, ka =
k(1Ra) = 0.
(iii). If n = kr, 1 < k, r < n, then 0 = n1R = (k1R)(r1R) implies that k1R = 0
or r1R = 0, a contradiction.

Theorem 4. Every ring R may be embedded in a ring S with identity. The
ring S may be chosen to be characteristic zero or the same characteristic as R.

Proof. Let S = R⊕ Z and define multiplication in S by

(r1, k1)(r2, k2) = (r1r2 + k2r1 + k1r2, k1k2)

S is a ring with identity (0, 1) and characteristic zero and the map R → S given
by r 7→ (r, 0) is a ring monomorphism. If charR = n > 0, use a similar proof
with S = R⊕ Zn and multiplication defined by

(r1, k̄1)(r2, k̄2) = (r1r2 + k2r1 + k1r2, k̄1k̄2)

Then charS = n.
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Definition 7. Let R be a ring and S a nonempty subset of R that is closed under
addition and multiplication in R. If S is itself a ring under these operations,
then S is called a subring of R. A subring I of a ring R is a left ideal provided
that

r ∈ R, x ∈ I =⇒ rx ∈ I

I is a right ideal provided that

r ∈ R, x ∈ I =⇒ xr ∈ I

I is an ideal iff it is both a left and right ideal.

If R is any ring, the center of R is the set C = {c ∈ R | ∀r ∈ R, cr = rc}. C
is easily a subring of R but may not be an ideal. A left ideal I of R that is not
0 or R is called a proper left ideal. Observe that if R has an identity 1R and I
is an ideal of R, I = R iff 1R ∈ I. A nonzero ideal I of R is proper iff I contains
no units of R. A division ring D has no proper left or right ideals since every
nonzero element of D is a unit. The ring of n× n matrices over a division ring
has proper left and right ideals, but no proper ideals.

Theorem 5. A nonempty subset I of a ring R is a left [resp. right] ideal iff
∀a, b ∈ I, ∀r ∈ R,

(i) a, b ∈ I =⇒ a− b ∈ I

(ii) a ∈ I, r ∈ R =⇒ ra ∈ I [resp. ar ∈ I]

Corollary 1. Let {Ai | i ∈ I} be a family of left ideals in a ring R. Then⋂
i∈I Ai is a left ideal.

Definition 8. Let X be a subset of a ring R. Let {Ai | i ∈ I} be the family
of all [left] ideals in R which contain X. Then

⋂
i∈I Ai is called the [left] ideal

generated by X. This ideal is denoted (X).

The elements ofX are called generators of the ideal (X). IfX = {x1, x2, · · · , xn}
then the ideal (X) is denoted (x1, x2, · · · , xn) and said to be finitely generated.
An ideal (x) generated by a single element is called a principal ideal. A principal
ideal ring is a ring in which every ideal is principal. A principal ideal domain is
an integral domain and a principal ideal ring.

Theorem 6. Let R be a ring, a ∈ R and X ⊆ R.

(i) (a) = {ra+ as+ na+
∑m

i=1 riasi | r, s, ri, si ∈ R,n ∈ Z}

(ii) If R has an identity, then (a) = {
∑n

i=1 riasi | ri, si ∈ R,n ∈ N}

(iii) If a is in the center of R, then (a) = {ra+ na | r ∈ R,n ∈ Z}

(iv) Ra = {ra | r ∈ R} is a left ideal in R which may not contain a.

(v) If R has an identity and a is in the center of R, then Ra = (a) = aR.
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(vi) If R has an identity and X is in the center of R, then the ideal (X) consists
of all finite sums r1a1 + · · ·+ rnan, ri ∈ R, ai ∈ X.

Let A1, A2, · · · , An be nonempty subsets of a ring R. Denote by A1 +A2 +
· · ·+ An = {a1 + a2 + · · ·+ an | ai ∈ Ai}. If A and B are nonempty subsets of
R let AB denote {a1b1 + · · · + anbn | n ∈ N, ai ∈ A, bi ∈ B}. More generally,
let A1A2 · · ·An denote the set of all finite sums of the form a1a2 · · · an. In the
special case when all are the same set A, denote it by An.

Theorem 7. Let A,A1, A2, · · · , An, B,C be [left] ideals in a ring R.

(i) A1 +A2 + · · ·+An and A1A2 · · ·An are [left] ideals

(ii) (A+B) + C = A+ (B + C)

(iii) (AB)C = ABC = A(BC)

(iv)
B(A1 +A2 + · · ·+An) = BA1 +BA2 + · · ·+BAn

(A1 +A2 + · · ·+An)C = A1C +A2C + · · ·+AnC

Let R be a ring and I an ideal of R. Since the additive group of R is abelian,
I is a normal subgroup. R/I is a well-defined quotient group.

Theorem 8. Let R be a ring, I an ideal of R. The additive quotient group R/I
with mulitplication given by (a+I)(b+I) = ab+I is a ring. If R is commutative
or has an identity, the same is true of R/I.

Isomorphism theorems also exist for rings.

Theorem 9. If f : R → S is a homomorphism of rings, then the kernel of f
is an ideal in R. Conversely, if I is an ideal in R, then the map π : R → R/I
given by r 7→ r + I is an epimorphism of rings with kernel I.

Proof. ker f is an additive subgroup ofR. If x ∈ ker f, r ∈ R, f(rx) = f(r)f(x) =
f(r)0 = 0 whence rx ∈ ker f . Thus ker f is an ideal. π is an epimorphism of
groups with kernel I. π(ab) = ab+ I = (a+ I)(b+ I) = π(a)π(b). π is also an
epimorphism of rings.

Theorem 10. If f : R → S is a homomorphism of rings and I is an ideal
of R contained in the kernel of f , then there is a unique homomorphism of
rings f̄ : R/I → S such that f̄(a + I) = f(a) for all a ∈ R. im f̄ = im f
and ker f = ker f̄ = ker f/I. f̄ is an isomorphism iff f is an epimorphism and
I = ker f .

Proof. Let b ∈ a + I. Then b − a ∈ I and f(b) = f(b − a + a) = f(a). Thus f
has the same effect on every element of a+ I. The map f̄ : R/I → S defined by
f̄(a+I) = f(a) is well-defined. Since f is a homomorphism, f̄ is easily shown to
be a homomorphism of rings. f̄ is unique since it is completely determined by
f . Clearly im f̄ = im f and a+ I ∈ ker f̄ iff a ∈ ker f . ker f̄ = ker f/I. f̄ is an
epimorphism iff f is an epimorphism. f̄ is a monomorphism iff I = ker f .
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Corollary 2 (First Isomorphism theorem). If f : R → S is a homomorphism
of rings, then f induces an isomorphism of rings R/ ker f ∼= im f .

Corollary 3. If f : R → S is a homomorphism of rings, I an ideal of R
and J an ideal of S such that f(I) ⊆ J , then f induces a homomorphism of
rings f̄ : R/I → S/J given by a + Imapstof(a) + J . f̄ is an isomorphism iff
im f + J = S and f−1(J) ⊆ I. In particular, if f is an epimorphism such that
f(I) = J and ker f ⊆ I, then f̄ is an isomorphism.

Proof. π◦f : R → S/J is a homomorphism of rings and I ⊆ f−1(J) = ker(π◦f).
There is a unique homomorphism of rings f̄ : R/I → S/J such that f̄(a+ I) =
f(a) + J . im f̄ = im(π ◦ f), ker f̄ = ker(π ◦ f)/I. im f̄ = S/J iff im f + J = S.
ker f̄ = 0 iff ker(π ◦ f) = I iff f−1(J) ⊆ I. Note that f(I) = J and ker f ⊆ I
implies f−1(J) ⊆ I.

Theorem 11. (i) Isomorphism of rings I/(I ∩ J) ∼= (I + J)/J

(ii) If I ⊆ J , then J/I is an ideal in R/I and there is an isomorphism of rings
(R/I)/(J/I) ∼= R/J .

(i) is the second isomorphism theorem and (ii) is the third isomorphism
theorem.

Theorem 12 (Fourth isomorphism theorem). If I is an ideal in a ring R, then
there is a one-to-one correspondence between the set of all ideals of R which
contain I and the set of all ideals of R/I, given by J 7→ J/I.

Definition 9. An ideal P in a ring R is said to be prime iff P ̸= R and for
any ideals A,B in R

AB ⊂ P =⇒ A ⊆ P ∨B ⊆ P

Theorem 13. If P is an ideal in a ring R such that P ̸= R and ∀a, b ∈ R

ab ∈ P =⇒ a ∈ P ∨ b ∈ P

then P is prime. Conversely, if P is prime and R is commutative, then P
satisfies the above condition.

Proof. Suppose A and B are ideals such that AB ⊆ P and ∃a ∈ A \ P . ∀b ∈
B, ab ∈ AB ⊆ P whence a ∈ P or b ∈ P . Thus b ∈ P so B ⊆ P and P is prime.
Conversely, if P is a prime ideal, R is commutative, and ab ∈ P , then (ab) ⊆ P .
Note that (a)(b) ⊆ (ab) whence (a)(b) ⊆ P . Either (a) ⊆ P or (b) ⊆ P , whence
a ∈ P or b ∈ P .

Theorem 14. In a commutative ring R, with identity 1R ̸= 0 an ideal P is
prime iff R/P is an integral domain.
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Proof. If P is prime, since P ̸= R, 1R +P ̸= P . R/P has no zero divisors since
(a+P )(b+P ) = P implies ab ∈ P implies a ∈ P or b ∈ P implies a+P = P or
b+P = P . Therefore R/P is an integral domain. If R/P is an integral domain,
then 1R + P ̸= 0 + P whence 1R ̸∈ P . Thus P ̸= R. Also, ab ∈ P implies
(a+ P )(b+ P ) = P implies a ∈ P or b ∈ P .

Definition 10. An ideal [resp. left] M in a ring R is said to be maximal iff
M ̸= R and for every [resp. left] ideal N such that M ⊆ N ⊆ R, either M = N
or N = R.

Theorem 15. In a nonzero ring R with identity, maximal [left] ideals will al-
ways exist. In fact every [left] ideal in R except R is contained in some maximal
[left] ideal.

Theorem 16. If R is a commutative ring such that R2 = R, then every maximal
ideal M in R is prime.

Proof. Suppose ab ∈ M but a ̸∈ M, b ̸∈ M . M + (a) and M + (b) properly
contains M . By maximality, M + (a) = R = M + (b). Since R is commutative
and ab ∈ M , (a)(b) ⊆ (ab) ⊆ M .

R = R2 = (M + (a))(M + (b)) = M2 + (a)M +M(b) + (a)(b) ⊆ M

This contradicts that M ̸= R. Thus a ∈ M or b ∈ M , whence M is prime.

In particular, R2 = R whenever R has an identity.

Theorem 17. Let M be an ideal in a ring R with identity 1R ̸= 0.

(i) If M is maximal and R is commutative, then R/M is a field.

(ii) If R/M is a division ring, then M is maximal.

Proof. (i). If M is maximal, then M is prime. Whence R/M is an integral
domain. We must show if a + M ̸= M , a + M has a multiplicative inverse in
R/M . M is properly contained in M + (a).Since M is maximal, M + (a) = R.
1R = m+ ra for some m ∈ M , r ∈ R. 1R − ra = m ∈ M .

1R +M = ra+M = (r +M)(a+M)

Thus r +M is a multiplicative inverse of a+M in R/M .
(ii). If R/M is a division ring, then 1R +M ̸= M whence 1R ̸∈ M and M ̸= R.
If N is an ideal such that M ⊂ N , let a ∈ N \M . a +M has a multiplicative
inverse say b +M . ab +M = 1R +M . ab − 1R ∈ M . But a ∈ N and M ⊂ N
implies that 1R ∈ N . Thus N = R. Therefore M is maximal.

Corollary 4. The following conditions on a commutative ring R with identity
1R ̸= 0 are equivalent:

(i) R is a field.
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(ii) R has no proper ideals.

(iii) 0 is a maximal ideal in R

(iv) Every nonzero homomorphism of rings R → S is a monomorphism.

Proof. R ∼= R/0 is a field iff 0 is maximal. 0 is maximal iff R has no proper
ideals.

Theorem 18. Let A1, A2, · · · , An be ideals in a ring R such that

(i) A1 +A2 + · · ·+An = R

(ii) ∀1 ≤ k ≤ n, Ak ∩ (A1 + · · ·+Ak−1 +Ak+1 + · · ·+An) = 0

Then R ∼= A1 ×A2 × · · · ×An.

Let A be an ideal and a, b ∈ R. a is said to be congruent to b modulo A
denoted a ≡ b (mod A) iff a− b ∈ A.

Theorem 19 (Chinese remainder theorem). Let A1, A2, · · · , An be ideals in a
ring R such that R2 + Ai = R for all i and Ai + Aj = R for all i ̸= j. If
b1, b2, · · · , bn ∈ R then there exists b ∈ R such that

∀i, b ≡ bi (mod Ai)

Furthermore b is uniquely determined up to congruence modulo the ideal A1 ∩
A2 ∩ · · · ∩An.

Proof. Since A1 +A2 = R and A1 +A3 = R,

R2 = (A1 +A2)(A1 +A3) ⊆ A1 +A2A3 ⊆ A1 +A2 ∩A3

Since R = A1+R2, R = A1+R2 ⊆ A1+A2∩A3 ⊆ R. Thus R = A1+A2∩A3.
Assume that R = A1 + A2 ∩ A3 ∩ · · · ∩ Ak−1. Then R2 = (A1 + A2 ∩ A3 ∩
· · · ∩ Ak−1)(A1 + Ak) ⊆ A1 + A2 ∩ A3 ∩ · · · ∩ Ak and hence R = R2 + A1 ⊆
A1 + A2 ∩ · · · ∩ Ak ⊆ R. Thus R = A1 + A2 ∩ · · · ∩ Ak and the induction step
is proved. R = A1 + A2 ∩ A3 ∩ · · · ∩ An. Similarly, R = Ak +

⋂
i ̸=k Ai. Thus

∃ak ∈ Ak, rk ∈
⋂

i ̸=k Ai such that bk = ak + rk. Note that rk ≡ bk (mod Ak)
and rk ≡ 0 (mod Ai) for i ̸= k. Let b = r1 + r2 + · · ·+ rn. Verify that bequivbk
(mod Ak). Finally, if c ∈ R is such that c ≡ bi (mod Ai) for each i, then b ≡ c
(mod Ai) for each i. Whence b− c ∈

⋂n
i=1 Ai.

Corollary 5. If A1, A2, · · · , An are ideals in a ring R, then there is a monomor-
phism of rings

θ : R/(A1 ∩A2 ∩ · · · ∩An) → R/A1 ×R/A2 × · · · ×R/An

If R2 +Ai = R for all i and for i ̸= j, Ai +Aj = R, then θ is an isomorphism.
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Proof. Let πi : R → R/Ai be the canonical epimorphism. The πi induces a
homomorphism θ1 : R → R/A1 ×R/A2 × · · · ×R/An with θ1(r) = (r +A1, r +
A2, · · · , r+An). ker θ1 = A1∩A2∩ · · ·∩An. Thus θ1 induces a monomorphism
θ : R/(A1∩A2∩· · ·∩An) → R/A1×R/A2×· · ·×R/An. If the hypotheses of the
Chinese remainder theorem are satisfied, for (b1 + A1, b2 + A2, · · · , bn + An) ∈
R/A1 × R/A2 × · · · × R/An, there exists b ∈ R such that b ≡ bi (mod Ai) for
all i. Thus θ(b +

⋂n
i=1 Ai) = (b + A1, b + A2, · · · + b + An) = (b1 + A1, b2 +

A2, · · · , bn +An). Whence θ is an isomorphism.

Definition 11. A nonzero element a of a commutative ring R is said to divide
an element b ∈ R (notated a | b) iff ∃x ∈ R, ax = b. Elements a, b of R are said
to be associates iff a | b and b | a.

Theorem 20. Let a, b, u ∈ R where R is a commutative ring with identity.

(i) a | b ⇐⇒ (b) ⊆ (a)

(ii) a and b are associates iff (a) = (b)

(iii) u is a unit iff u | r for all r ∈ R

(iv) u is a unit iff (u) = R

(v) The relation “a is an associate of b” is an equivalence relation on R.

(vi) If a = br with r ∈ R a unit, then a and b are associates. If R is an integral
domain, the converse is true.

Definition 12. Let R be a commutative ring with identity. An element c ∈ R
is irreducible iff

(i) c is a nonzero nonunit.

(ii) c = ab =⇒ a or b is a unit

An element p ∈ R is prime iff

(i) p is a nonzero nonunit

(ii) p | ab =⇒ p|a ∨ p|b

Theorem 21. Let p and c be nonzero elements in an integral domain R.

(i) p is prime iff (p) is a nonzero prime ideal

(ii) c is irreducible iff (c) is maximal in the set S of all proper principal ideals
of R.

(iii) Every prime element of R is irreducible.

(iv) If R is a principal ideal domain, then p is prime iff p is irreducible.
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(v) Every associate of an irreducible [resp. prime] element of R is irreducible
[resp. prime]

(vi) The only divisors of an irreducible element of R are its associates and the
units of R.

Proof. (i). If p is prime, ab ∈ (p) ⇐⇒ p | ab =⇒ p | a ∨ p | b ⇐⇒ a ∈
(p) ∨ b ∈ (p). If (p) is a nonzero prime ideal, p | ab ⇐⇒ ab ∈ (p) =⇒ a ∈
(p) ∨ b ∈ (p) ⇐⇒ p | a ∨ p | b.
(ii). If c is irreducible, then (c) is a proper ideal of R. If (c) ⊆ (d), then c = dx.
Since c is irreducible, d or x is a unit. Hence (c) is maximal. Conversely, if (c)
is maximal in S, then c is a nonzero nonunit in R. If c = ab, then (c) ⊆ (a)
whence (c) = (a) or (a) = R. If (a) = R, then a is a unit. If (c) = (a), then
a = cy hence c = ab = cyb. Thus b is a unit. Therefore b is irreducible.
(iii). If p = ab, p | a ∨ p | b. Say p | a. Then px = a and p = ab = pxb. Thus b
is a unit.
(iv). If p is irreducible, then (p) is maximal, hence prime, thus p is prime.
(v). If c is irreducible, d is an associate of c, c = du where u is a unit. If d = ab,
then c = abu whence a is a unit or bu is a unit. If bu is a unit, so is b hence d
is irreducible.
(vi). If c is irreducible and a | c, then (c) ⊆ (a) whence (c) = (a) or (a) = R.
Thus a is an associate of c or a unit.

Definition 13. An integral domain R is a unique factorization domain iff

(i) Every nonzero unit element a of R can be written a = c1c2 · · · cn with
c1, c2, · · · , cn irreducible.

(ii) If a = c1c2 · · · cn, a = d1d2 · · · dm, ci, dj irreducible, then n = m and for
some permutation σ of {1, 2, · · · , n}, ci and dσ(i) are associates for every
i.

Lemma 1. If R is a principal ideal ring and (a1) ⊆ (a2) ⊆ · · · is a chain of
ideals in R, then for some integer n, (aj) = (an) for all j ≥ n.

Proof. Let A =
⋃

i≥1(ai). A is an ideal. Let A = (a). ∃n, a ∈ (an). Thus
(a) = (an).

Theorem 22. Every principal ideal domain is a unique factorization domain.

Proof. Let R be PID and S be the set of all nonzero nonunit elements of R
which cannot be factored as a finite product of irreducible elements. Suppose
S is not empty and a ∈ S. Then (a) is a proper ideal and is contained in a
maximal ideal (c). c is irreducible. c | a. Therefore, it is possible to choose
for each a ∈ S an irreducible divisor ca of a. Since R is an integral domain, ca
uniquely determines a nonzero xa ∈ R such that caxa = a. We claim xa ∈ S.
If xa were a unit, a would be irreducible hence xa is not a unit. If xa were not
in S, then xa has a factorization as a product of irreducibles, whence a also
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does. Thus xa ∈ S. We claim (a) ⊂ (xa). Since (a) = (xa) implies xa = ay for
some y ∈ R whence a = xaca = ayca. Contradicting that ca is irreducible and
hence a nonunit. The function f : S → S given by f(a) = xa is well defined.
By the recursion theorem, there is a function ϕ : N → S such that ϕ(0) = a,
ϕ(n + 1) = f(ϕ(n)). Denote ϕ(n) = an. There is an ascending chain of ideals
(a) ⊂ (a1) ⊂ (a2) ⊂ · · · contradicting the previous lemma. Thus S must be
empty. Finally, if c1c2 · · · cn = a = d1d2 · · · dm then c1 divides some di. Since
c1 is not a unit, c1 is associate to di. We can cancel c1 and di (with a factor
of a unit), and proceed by induction to canceling the associates. If n ̸= m, this
would imply that some of the ci or di are units, a contradiction.

Definition 14. Let R be a commutative ring. R is a Euclidean ring iff there is
a function ϕ : R \ {0} → N such that

(i) If a, b ∈ R, ab ̸= 0, then ϕ(a) ≤ ϕ(ab)

(ii) If a, b ∈ R, b ̸= 0,∃q, r ∈ R, a = qb+r with r = 0 or r ̸= 0 and ϕ(r) < ϕ(b).

A Euclidean ring which is an integral domain is called a Euclidean domain.

Theorem 23. Every Euclidean ring R is a principal ideal ring with identity.
Every Euclidean domain is a unique factorization theorem.

Proof. If I is a nonzero ideal in R, choose a ∈ I such that ϕ(a) is the least
integer in the set {ϕ(x) | x ̸= 0, x ∈ I}. If b ∈ I, then b = aq + r with r = 0
or r ̸= 0 and ϕ(r) < ϕ(a). r ∈ I so that r = 0, whence b = aq. I = (a). R
is a principal ideal ring. Since R itself is an ideal, R = Ra for some a ∈ R.
∃e ∈ R, a = ea = ae. If b ∈ R,∃x ∈ R, b = xa. Thus be = xae = xa = b.
Whence e is a multiplicative identity for R.

Definition 15. Let X be a nonempty subset of a commutative ring R. An
element d ∈ R is a greatest common divisor of X provided

(i) ∀a ∈ X, d | a

(ii) ∀a ∈ X, c | a =⇒ c | d

Greatest common divisors need not exist. When it exists, it may not be
unique. However, two greatest common divisors are associates by (ii). Further-
more, any associate of a greatest common divisor is a greatest common divisor.
If R has an identity and a1, a2, · · · , an have 1R as a greatest common divisor,
then a1, a2, · · · , an are said to be relatively prime.

Theorem 24. Let a1, a2, · · · , an be elements of a commutative ring R with
identity.

(i) d ∈ R is a greatest common divisor of {a1, a2, · · · , an} such that d =
r1a1 + r2a2 + · · ·+ rnan for some ri ∈ R iff (d) = (a1) + (a2) + · · ·+ (an)
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(ii) If R is a principal ideal ring, then a greatest common divisor of a1, a2, · · · , an
exists and every one is of the form r1a1 + r2a2 + · · ·+ rnan

(iii) If R is a unique factorization domain, then there exists a greatest common
divisor of a1, a2, · · · , an.

Proof. (i). Routinely follows. (ii) follows from (i). (iii). Each ai has a fac-
torization ai = c

mi,1

1 c
mi,2

2 · · · cmi,t

t with c1, · · · , ct distinct irreducible elements
and each mij ≥ 0. d = ck1

1 ck2
2 · · · ckt

t where kj = min{m1j ,m2j , · · · ,mnj} is a
greatest common divisor.
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