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Definition 1. A subnormal series of a group G is a chain of subgroups G =
G0 ≥ G1 ≥ · · · ≥ Gn such that Gi+1 ⊴ Gi for i ∈ {0, 1, · · · , n}. The factors
of the series are the quotient groups Gi/Gi+1. The length of the series is the
number of strict inclusions. A subnormal series such that Gi ⊴ G for all i is
said to be a normal series.

As an example, the derived series G ≥ G(1) ≥ · · · ≥ G(n) is a normal series
for any group G. If G is nilpotent, the ascending central series C1(G) ≤ C2(G) ≤
· · · ≤ Cn(G) = G is a normal series for G.

Definition 2. Let G = G0 ≥ G1 ≥ · · · ≥ Gn be a subnormal series. A one-step
refinement of this series is any series of the form G = G0 ≥ · · · ≥ Gi ≥ N ≥
Gi+1 ≥ · · · ≥ Gn or G = G0 ≥ · · · ≥ Gn ≥ N where N ⊴ Gi and Gi+1 ⊴ N for
i < n. A refinement of a subnormal series S is any subnormal series obtained
from S by a finite sequence of one-step refinements. A refinement is said to be
proper iff its length is larger than the length of S.

Definition 3. A subnormal series G = G0 ≥ G1 ≥ · · · ≥ Gn = ⟨e⟩ is a
composition series iff each factor Gi/Gi+1 is simple. A subnormal series G =
G0 ≥ G1 ≥ · · · ≥ Gn = ⟨e⟩ is a solvable series iff each factor is abelian.

A commonly used fact for composition series: When G ̸= N , G/N is simple
iff N is maximal in the set of all normal subgroups M of G with M ̸= G.

Theorem 1. (i) Every finite group G has a composition series.

(ii) Every refinement of a solvable series is a solvable series.

(iii) A subnormal series is a composition series iff it has no proper refinements.

Proof. (i) Let G1 be a maximal normal subgroup of G. Then G/G1 is simple.
Let G2 be a maximal normal subgroup of G1 and so on. Since G is finite, this
process must end with Gn = ⟨e⟩. Thus G > G1 > G2 > · · · > Gn = ⟨e⟩ is a
composition series.

(ii) If Gi/Gi+1 is abelian, Gi+1 ⊴ H ⊴ Gi, then H/Gi+1 is abelian since
it is a subgroup of Gi/Gi+1 and Gi/H is abelian since it is isomorphic to
(Gi/Gi+1)/(H/Gi+1).

(iii) If Gi+1 ◁ H ◁ Gi, H/Gi+1 is a proper normal subgroup of Gi/Gi+1. All
proper normal subgroups of Gi/Gi+1 have the form H/Gi+1 for some Gi+1 ◁
H ◁ Gi.

Theorem 2. A group G is solvable iff it has a solvable series.
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Proof. If G is solvable, G ≥ G(1) ≥ G(2) ≥ · · · ≥ G(n) = ⟨e⟩ is a solvable series.
If G ≥ G1 ≥ G2 ≥ · · · ≥ Gn = ⟨e⟩ is a solvable series for G, then G/G1 abelian
implies that G1 ≥ G(1). G1/G2 abelian implies G2 ≥ G′

1 ≥ G(2). Proceeding
by induction conclude ∀i, Gi ≥ G(i). In particular, ⟨e⟩ = Gn ≥ G(n) so G is
solvable.

Proposition 1. A finite group G is solvable iff G has a composition series
whose factors are cyclic of prime order.

Proof. A composition series with cyclic factors is a solvable series. Conversely,
assume G ≥ G1 ≥ G2 ≥ · · · ≥ Gn = ⟨e⟩ is a solvable series for G. If G0 ̸= G1,
let H1 be a maximal normal subgroup of G containing G1. If H1 ̸= G1, let H2

be a maximal normal subgroup of G containing G1. Continue until we obtain
a series G > H1 > H2 > · · · > Hk > G1 with each subgroup a maximal normal
subgroup of the preceding, whence each factor is simple. This series terminates
as in, eventually Hk+1 = G1 since G is finite. Doing this for each pair (Gi, Gi+1)
gives a solvable refinement G = N0 > N1 > · · · > Nr = ⟨e⟩ of the original series.
Each factor of this series is abelian and simple hence cyclic of prime order.

Definition 4. Two subnormal series S and T of a group G are equivalent iff
there is a one-to-one correspondence between the nontrivial factors of S and the
nontrivial factors of T such that corresponding factors are isomorphic groups.

Lemma 1. If S is a composition series of a group G, then any refinement of
S is equivalent to S.

Proof. Since S is a composition series, S has no proper refinements. Thus any
refinement of S is obtained by inserting additional copies of Gi. Any refinement
of S has the exact same nontrivial factors as S and is thus equivalent to S.

Lemma 2 (Zassenhaus). Let A∗, A,B∗, B be subgroups of a group G such that
A∗ ⊴ A,B∗ ⊴ B.

(i) A∗(A ∩B∗) ⊴ A∗(A ∩B)

(ii) B∗(A∗ ∩B) ⊴ B∗(A ∩B)

(iii) A∗(A ∩B)/A∗(A ∩B∗) ∼= B∗(A ∩B)/B∗(A∗ ∩B)

Proof. Note A∩B∗ = (A∩B)∩B∗ ⊴ A∩B. Similarly, A∗ ∩B ⊴ A∩B. Thus
D = (A∗ ∩B)(A∩B∗) ⊴ A∩B. Also, A∗(A∩B) ≤ A,B∗(A∩B) ≤ B. We will
define an epimorphism f : A∗(A∩B) → (A∩B)/D with kernel A∗(A∩B∗). This
would imply that A∗(A ∩B∗) ⊴ A∗(A ∩B) and that A∗(A ∩B)/A∗(A ∩B∗) ∼=
(A∩B)/D. Define f : A∗(A∩B) → (A∩B)/D as follows: If a ∈ A∗, c ∈ A∩B,
let f(ac) = Dc. ac = a1c1 implies c1c

−1 = a−1
1 a ∈ (A∩B)∩A∗ = A∗ ∩B ≤ D.

Thus f is well defined. f is clearly surjective.

f((a1c1)(a2c2)) = f(a1a3c1c2) = Dc1c2 = Dc1Dc2 = f(a1c1)f(a2c2)
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Finally, ac ∈ ker f ⇐⇒ c ∈ D ⇐⇒ c = a1c1, a1 ∈ A∗ ∩B, c1 ∈ A∩B∗. Hence
ac ∈ ker f ⇐⇒ ac = (aa1)c1 ∈ A∗(A∩B∗). ker f = A∗(A∩B∗). A symmetric
argument shows (ii) and B∗(A ∩ B)/B∗(A∗ ∩ B) ∼= (A ∩ B)/D whence (iii)
follows.

Theorem 3 (Schreier Refinement). Any two subnormal (resp. normal) series
of a group G have subnormal (resp. normal) refinements that are equivalent.

Proof. Let G = G0 ≥ G1 ≥ · · · ≥ Gn and G = H0 ≥ H1 ≥ · · · ≥ Hm

be subnormal [resp. normal] series. Let Gn+1 = Hm+1 = ⟨e⟩ and for each
0 ≤ i ≤ n, consider the groups

Gi = Gi+1(Gi∩H0) ≥ Gi+1(Gi∩H1) ≥ · · · ≥ Gi+1(Gi∩Hm) ≥ Gi+1(Gi∩Hm+1) = Gi+1

For each 0 ≤ j ≤ m, the Zassenhaus lemma applied to Gi+1, Gi, Hj+1, Hj

shows that Gi+1(Gi ∩Hj+1) ⊴ Gi+1(Gi ∩Hj) (if the original series is normal,
each Gi+1(Gi ∩Hj+1) ⊴ G) Inserting these groups between each Gi and Gi+1,
denoting Gi+1(Gi ∩Hj) by G(i, j) gives a subnormal (resp. normal) refinement
of G0 ≥ G1 ≥ · · · ≥ Gn. A symmetric argument shows there is a refinement of
H0 ≥ H1 ≥ · · · ≥ Hm with H(i, j) = Hj+1(Gi ∩Hj).

G = G(0, 0) ≥ G(0, 1) ≥ · · · ≥ G(0,m) ≥ G(1, 0) ≥ G(1, 1) ≥ · · · ≥ G(1,m) ≥ G(2, 0) ≥ · · · ≥ G(n,m)

G = H(0, 0) ≥ H(1, 0) ≥ · · · ≥ H(n, 0) ≥ H(0, 1) ≥ H(1, 1) ≥ · · · ≥ H(n, 1) ≥ H(0, 2) ≥ · · · ≥ H(n,m)

By the Zassenhaus lemma, G(i, j)/G(i, j + 1) ∼= H(i, j)/H(i+ 1, j).

Theorem 4 (Jordan-Hölder). Any two composition series of a group G are
equivalent. Therefore every group having a composition series determines a
unique (up to permutation and isomorphism) list of simple groups.

Proof. Since composition series are subnormal series, any two composition series
have equivalent refinements by the Schreier Refinement Theorem. But every
refinement of a composition series is equivalent to the original composition series.
Thus any two composition series are equivalent.
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