Jordan-Hölder Theorem

written by Night Shift in Math on Functor Network original link: https://functor.network/user/854/entry/380

Definition 1. A subnormal series of a group G is a chain of subgroups $G = G_0 \geq G_1 \geq \cdots \geq G_n$ such that $G_{i+1} \subseteq G_i$ for $i \in \{0, 1, \cdots, n\}$. The factors of the series are the quotient groups G_i/G_{i+1} . The length of the series is the number of strict inclusions. A subnormal series such that $G_i \subseteq G$ for all i is said to be a normal series.

As an example, the derived series $G \geq G^{(1)} \geq \cdots \geq G^{(n)}$ is a normal series for any group G. If G is nilpotent, the ascending central series $C_1(G) \leq C_2(G) \leq \cdots \leq C_n(G) = G$ is a normal series for G.

Definition 2. Let $G = G_0 \ge G_1 \ge \cdots \ge G_n$ be a subnormal series. A one-step refinement of this series is any series of the form $G = G_0 \ge \cdots \ge G_i \ge N \ge G_{i+1} \ge \cdots \ge G_n$ or $G = G_0 \ge \cdots \ge G_n \ge N$ where $N \le G_i$ and $G_{i+1} \le N$ for i < n. A refinement of a subnormal series S is any subnormal series obtained from S by a finite sequence of one-step refinements. A refinement is said to be proper iff its length is larger than the length of S.

Definition 3. A subnormal series $G = G_0 \ge G_1 \ge \cdots \ge G_n = \langle e \rangle$ is a composition series iff each factor G_i/G_{i+1} is simple. A subnormal series $G = G_0 \ge G_1 \ge \cdots \ge G_n = \langle e \rangle$ is a solvable series iff each factor is abelian.

A commonly used fact for composition series: When $G \neq N$, G/N is simple iff N is maximal in the set of all normal subgroups M of G with $M \neq G$.

Theorem 1. (i) Every finite group G has a composition series.

- (ii) Every refinement of a solvable series is a solvable series.
- (iii) A subnormal series is a composition series iff it has no proper refinements.
- *Proof.* (i) Let G_1 be a maximal normal subgroup of G. Then G/G_1 is simple. Let G_2 be a maximal normal subgroup of G_1 and so on. Since G is finite, this process must end with $G_n = \langle e \rangle$. Thus $G > G_1 > G_2 > \cdots > G_n = \langle e \rangle$ is a composition series.
- (ii) If G_i/G_{i+1} is abelian, $G_{i+1} \subseteq H \subseteq G_i$, then H/G_{i+1} is abelian since it is a subgroup of G_i/G_{i+1} and G_i/H is abelian since it is isomorphic to $(G_i/G_{i+1})/(H/G_{i+1})$.
- (iii) If $G_{i+1} \triangleleft H \triangleleft G_i$, H/G_{i+1} is a proper normal subgroup of G_i/G_{i+1} . All proper normal subgroups of G_i/G_{i+1} have the form H/G_{i+1} for some $G_{i+1} \triangleleft H \triangleleft G_i$.

Theorem 2. A group G is solvable iff it has a solvable series.

Proof. If G is solvable, $G \geq G^{(1)} \geq G^{(2)} \geq \cdots \geq G^{(n)} = \langle e \rangle$ is a solvable series. If $G \geq G_1 \geq G_2 \geq \cdots \geq G_n = \langle e \rangle$ is a solvable series for G, then G/G_1 abelian implies that $G_1 \geq G^{(1)}$. G_1/G_2 abelian implies $G_2 \geq G_1' \geq G^{(2)}$. Proceeding by induction conclude $\forall i, G_i \geq G^{(i)}$. In particular, $\langle e \rangle = G_n \geq G^{(n)}$ so G is solvable.

Proposition 1. A finite group G is solvable iff G has a composition series whose factors are cyclic of prime order.

Proof. A composition series with cyclic factors is a solvable series. Conversely, assume $G \geq G_1 \geq G_2 \geq \cdots \geq G_n = \langle e \rangle$ is a solvable series for G. If $G_0 \neq G_1$, let H_1 be a maximal normal subgroup of G containing G_1 . If $H_1 \neq G_1$, let H_2 be a maximal normal subgroup of G containing G_1 . Continue until we obtain a series $G > H_1 > H_2 > \cdots > H_k > G_1$ with each subgroup a maximal normal subgroup of the preceding, whence each factor is simple. This series terminates as in, eventually $H_{k+1} = G_1$ since G is finite. Doing this for each pair (G_i, G_{i+1}) gives a solvable refinement $G = N_0 > N_1 > \cdots > N_r = \langle e \rangle$ of the original series. Each factor of this series is abelian and simple hence cyclic of prime order. \square

Definition 4. Two subnormal series S and T of a group G are equivalent iff there is a one-to-one correspondence between the nontrivial factors of S and the nontrivial factors of T such that corresponding factors are isomorphic groups.

Lemma 1. If S is a composition series of a group G, then any refinement of S is equivalent to S.

Proof. Since S is a composition series, S has no proper refinements. Thus any refinement of S is obtained by inserting additional copies of G_i . Any refinement of S has the exact same nontrivial factors as S and is thus equivalent to S. \square

Lemma 2 (Zassenhaus). Let A^* , A, B^* , B be subgroups of a group G such that $A^* \subseteq A$, $B^* \subseteq B$.

- (i) $A^*(A \cap B^*) \leq A^*(A \cap B)$
- (ii) $B^*(A^* \cap B) \triangleleft B^*(A \cap B)$
- (iii) $A^*(A \cap B)/A^*(A \cap B^*) \cong B^*(A \cap B)/B^*(A^* \cap B)$

Proof. Note $A \cap B^* = (A \cap B) \cap B^* \leq A \cap B$. Similarly, $A^* \cap B \leq A \cap B$. Thus $D = (A^* \cap B)(A \cap B^*) \leq A \cap B$. Also, $A^*(A \cap B) \leq A$, $B^*(A \cap B) \leq B$. We will define an epimorphism $f : A^*(A \cap B) \to (A \cap B)/D$ with kernel $A^*(A \cap B^*)$. This would imply that $A^*(A \cap B^*) \leq A^*(A \cap B)$ and that $A^*(A \cap B)/A^*(A \cap B^*) \cong (A \cap B)/D$. Define $f : A^*(A \cap B) \to (A \cap B)/D$ as follows: If $a \in A^*$, $c \in A \cap B$, let f(ac) = Dc. $ac = a_1c_1$ implies $c_1c^{-1} = a_1^{-1}a \in (A \cap B) \cap A^* = A^* \cap B \leq D$. Thus f is well defined. f is clearly surjective.

$$f((a_1c_1)(a_2c_2)) = f(a_1a_3c_1c_2) = Dc_1c_2 = Dc_1Dc_2 = f(a_1c_1)f(a_2c_2)$$

Finally, $ac \in \ker f \iff c \in D \iff c = a_1c_1, a_1 \in A^* \cap B, c_1 \in A \cap B^*$. Hence $ac \in \ker f \iff ac = (aa_1)c_1 \in A^*(A \cap B^*)$. $\ker f = A^*(A \cap B^*)$. A symmetric argument shows (ii) and $B^*(A \cap B)/B^*(A^* \cap B) \cong (A \cap B)/D$ whence (iii) follows.

Theorem 3 (Schreier Refinement). Any two subnormal (resp. normal) series of a group G have subnormal (resp. normal) refinements that are equivalent.

Proof. Let $G = G_0 \ge G_1 \ge \cdots \ge G_n$ and $G = H_0 \ge H_1 \ge \cdots \ge H_m$ be subnormal [resp. normal] series. Let $G_{n+1} = H_{m+1} = \langle e \rangle$ and for each $0 \le i \le n$, consider the groups

$$G_i = G_{i+1}(G_i \cap H_0) \ge G_{i+1}(G_i \cap H_1) \ge \dots \ge G_{i+1}(G_i \cap H_m) \ge G_{i+1}(G_i \cap H_{m+1}) = G_{i+1}(G_i \cap H_m) \ge G_{i+1}(G_i \cap$$

For each $0 \leq j \leq m$, the Zassenhaus lemma applied to $G_{i+1}, G_i, H_{j+1}, H_j$ shows that $G_{i+1}(G_i \cap H_{j+1}) \leq G_{i+1}(G_i \cap H_j)$ (if the original series is normal, each $G_{i+1}(G_i \cap H_{j+1}) \leq G$) Inserting these groups between each G_i and G_{i+1} , denoting $G_{i+1}(G_i \cap H_j)$ by G(i,j) gives a subnormal (resp. normal) refinement of $G_0 \geq G_1 \geq \cdots \geq G_n$. A symmetric argument shows there is a refinement of $H_0 \geq H_1 \geq \cdots \geq H_m$ with $H(i,j) = H_{j+1}(G_i \cap H_j)$.

$$G = G(0,0) \ge G(0,1) \ge \cdots \ge G(0,m) \ge G(1,0) \ge G(1,1) \ge \cdots \ge G(1,m) \ge G(2,0) \ge \cdots \ge G(n,m)$$

$$G = H(0,0) \geq H(1,0) \geq \cdots \geq H(n,0) \geq H(0,1) \geq H(1,1) \geq \cdots \geq H(n,1) \geq H(0,2) \geq \cdots \geq H(n,m)$$

By the Zassenhaus lemma, $G(i,j)/G(i,j+1) \cong H(i,j)/H(i+1,j)$.

Theorem 4 (Jordan-Hölder). Any two composition series of a group G are equivalent. Therefore every group having a composition series determines a unique (up to permutation and isomorphism) list of simple groups.

Proof. Since composition series are subnormal series, any two composition series have equivalent refinements by the Schreier Refinement Theorem. But every refinement of a composition series is equivalent to the original composition series. Thus any two composition series are equivalent. \Box