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Definition 1. Let G be a group, C1(G) = C(G), and define Ci(G) to be the in-
verse image of C(G/Ci−1(G)) under the canonical projection G→ G/Ci−1(G).
The ascending central series of G is

⟨e⟩ ≤ C1(G) ≤ C2(G) ≤ · · ·

G is said to be nilpotent iff ∃n ∈ N, Cn(G) = G.

Theorem 1. Every finite p-group is nilpotent.

Proof. G and all its nontrivial quotients are p-groups and thus have nontriv-
ial centers. Thus if G ̸= Ci(G), Ci(G) < Ci+1(G). Since G is finite, ∃n ∈
N, Cn(G) = G.

Theorem 2. The direct product of a finite number of nilpotent groups is nilpo-
tent.

Proof. Suppose G = H × K. Assume that Ci(G) = Ci(H) × Ci(K). Let
πH : H → H/Ci(H) be the canonical epimorphism. Similarly for πK . Verify
that the canonical epimorphism ϕ : G→ G/Ci(G) is the composition

G = H×K π−→ H/Ci(H)×K/Ci(K)
ψ−→ (H×K)/(Ci(H)×Ci(K)) = G/Ci(G)

where π = πH × πK and ψ is an isomorphism. Consequently,

Ci+1(G) = ϕ−1[C(G/Ci(G))] = π−1 ◦ ψ−1[C(G/Ci(G))]

= π−1[C(H/Ci(H))× C(K/Ci(K))]

= π−1
H [C(H/Ci(H))]× π−1

K [C(K/Ci(K))]

= Ci+1(H)× Ci+1(K)

The inductive step is proved so Ci(G) = Ci(H) × Ci(K) for all i. Since H,K
are nilpotent, ∃n ∈ N, Cn(H) = H,Cn(K) = K. Thus Cn(G) = G.

Lemma 1. If H is a proper subgroup of a nilpotent group G, then H is a proper
subgroup of its normalizer NG(H).

Proof. Let C0(G) = ⟨e⟩ and let n be the largest index such that Cn(G) ≤
H. Choose a ∈ Cn+1(G) \ H. ∀h ∈ H, ahCn(G) = haCn(G). Thus ∃h′ ∈
Cn(G), ah = hah′. This implies a ∈ NG(H). Thus a ∈ NG(H) \H.

Proposition 1. A finite group is nilpotent iff it is the direct product of its Sylow
subgroups.
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Proof. If G is the direct product of its Sylow p-subgroups, then it is nilpotent
by our previous results. If G is nilpotent and P is a Sylow p-subgroup of
G for some prime p, then either G = P or P is a proper subgroup. In the
latter case, P is a proper subgroup of NG(P ). Since NG(NG(P )) = NG(P ),
NG(P ) = G. Thus P ◁ G and hence the unique Sylow p-subgroup of G. Let
|G| = pn1

1 pn2
2 · · · pnk

k where pi are distinct primes and let P1, P2, · · · , Pk be the
corresponding proper normal Sylow subgroups of G. For i ̸= j, Pi ∩ Pj = ⟨e⟩.
Thus for any x ∈ Pi, y ∈ Pj , xy = yx. It is easy to see that G = P1P2 · · ·Pk is
an inner direct product.

Corollary 1. If G is a finite nilpotent group and m | |G|, G has a subgroup of
order m.

Definition 2. Let G be a group. The subgroup generated by {aba−1b−1 | a, b ∈
G} is called the commutator subgroup of G and is denoted G′. The elements
[a, b] = aba−1b−1 are called commutators.

G is abelian iff G′ = ⟨e⟩.

Theorem 3. If G is a group, then G′ ⊴ G and G/G′ is abelian. If N ⊴ G,
then G/N is abelian iff G′ ≤ N .

Proof. Note that for every endomorphism f : G → G, f(G′) ≤ G′. Hence,
G′ ⊴ G. Since (ab)(ba)−1 ∈ G′, abG = baG and hence G/G′ is abelian. If
G/N is abelian, abN = baN for all a, b ∈ G, whence ab(ba)−1 ∈ N . Therefore
G′ ≤ N . If G′ ≤ N, ab(ba)−1 ∈ N so abN = baN .

Definition 3. Let G be a group and G(1) = G′. Define G(i) = (G(i−1))′. G(i)

is called the ith derived subgroup of G. The derived series of G is G ≥ G(1) ≥
G(2) ≥ · · · . A group G is said to be solvable iff G(n) = ⟨e⟩ for some n.

Proposition 2. Every nilpotent group is solvable.

Proof. By definition, Ci(G)/Ci−1(G) = C(G/Ci−1(G)) is abelian. Ci(G)
′ ≤

Ci−1(G) and C(G)
′ = ⟨e⟩. For some n, G = Cn(G). Therefore C(G/Cn−1(G)) =

G/Cn−1(G) is abelian and hence G′ ≤ Cn−1(G). G
(2) ≤ Cn−1(G)

′ ≤ Cn−2(G).
Continuing, G(n) ≤ C(G)′ = ⟨e⟩. Hence G is solvable.

Theorem 4. (i) Every subgroup and every homomorphic image of a solvable
group is solvable.

(ii) If N is a normal subgroup of a group G such that N and G/N are solvable,
then G is solvable.

Proof. (i) If f : G→ H is a homomorphism [resp. epimorphism] then f(G(i)) ≤
H(i) [resp. f(G(i)) = H(i)] for all i. Suppose f is an epimorphism and G is
solvable. For some n, ⟨e⟩ = f(G(n)) = H(n), whence H is solvable. Similarly
for the subgroup.

(ii) Let f : G → G/N be the canonical epimorphism. ∃n ∈ N, f(G(n)) =
(G/N)(n) = ⟨e⟩. Hence G(n) ≤ ker f = N . By (i), G(n) is solvable. Hence
∃k ∈ N, G(n+k) = (G(n))(k) = ⟨e⟩.
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Corollary 2. If n ≥ 5, the symmetric group Sn is not solvable.

Proof. Since An is nonabelian, A′
n is not trivial. Since A′

n ⊴ An and An is

simple, A′
n = An. Thus A

(i)
n = An ̸= {(1)} for all i whence An is not solvable.

Thus Sn is not solvable.

Definition 4. A subgroup H of a group G is said to be characteristic iff ∀f ∈
AutG, f(H) ≤ H. It is fully invariant iff for every endomorphism f : G → G,
f(H) ≤ H. A minimal subgroup of a group G is a nontrivial normal subgroup
that contains no proper subgroup which is normal in G.

Lemma 2. Let N be a normal subgroup of a finite group G and H any subgroup
of G.

(i) If H is a characteristic subgroup of N , then H ⊴ G.

(ii) Every normal Sylow p-subgroup of G is fully invariant.

(iii) If G is solvable and N is a minimal normal subgroup, then N is an abelian
p-group for some prime p.

Proof. (i) Since ∀a ∈ G, aNa−1 = N , conjugation by a is an automorphism of
N . Since H is characteristic in N , aHa−1 ≤ H for all a ∈ G. Hence H ⊴ G.

(ii) Let P be a normal Sylow p-subgroup of G. Then P = G(p). Let
f : G → G be an endomorphism. For g ∈ f(P ), ∃h ∈ P, g = f(h). Suppose

|h| = pk. Then gp
k

= e so |g| | pk implying g ∈ P . Thus f(P ) ≤ P .
(iii) It is easy to see that N ′ is fully invariant in N . Whence N ′ ⊴ G. Thus

N ′ = ⟨e⟩ or N ′ = N . Since N is solvable, N ′ = ⟨e⟩ and N is a nontrivial abelian
group. Let P be a nontrivial Sylow p-subgroup of N for some prime p. Since
N is abelian, P is normal in N and hence fully-invariant in N . Consequently,
P ⊴ G. Since N is minimal and P is nontrivial, P = N .

Theorem 5 (Hall). Let G be a finite solvable group of ordermn with (m,n) = 1.
Then

(i) G contains a subgroup of order m.

(ii) Any two subgroups of order m are conjugate.

(iii) Any subgroup of G of order k, where k | m, is contained in a subgroup of
order m.

Proof. The proof proceeds by induction on |G|, with orders less than or equal
to 5 being trivial. There are two cases:

1. There is a nontrivial proper normal subgroup H of G whose order is not
divisible by n.

2. Every proper nontrivial normal subgroup of G has order divisible by n.
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Case 1. (i) |H| = m1n1,m1 | m,n1 | n, n1 < n. G/H is a solvable group of order
mn
m1n1

< mn with (m/m1, n/n1) = 1. By induction, G/H contains a subgroup
A/H of order m/m1 where A ≤ G. Then |A| = |H|[A : H] = mn1 < mn. A is
solvable and contains a subgroup of order m.

(ii) Suppose B,C are subgroups of G of order m. Since H ⊴ G, HB is a

subgroup whose order k necessarily divides mn. k = |HB| = |H||B|
|H∩B| =

m1n1m
|H∩B|

whence k | m1n1m. Since (n,m1) = 1, k | mn1. By Lagrange’s theorem, m | k
and m1n1 | k. Thus (m,n) = 1 implies mn1 | k. Therefore k = mn1. Similarly,
|HC| = mn1. Thus HB/H and HC/H are subgroups of G/H of order m/m1.
By induction, they are conjugate for some xH ∈ G/H. xH(HB/H)x−1H =
HC/H. Thus xHBx−1 = HC. xBx−1 and C are subgroups of HC of order m
and are therefore conjugate in HC by induction. Hence B is conjugate to C in
G.

(iii) If a subgroup K of G has order k | m, then HK/H ∼= K/H ∩ K has
order dividing k. Since HK/H ≤ G/H, |HK/H| | mn

m1n1
. (k, n) = 1 implies

|HK/H| | m
m1

. By induction, there is a subgroup A/H of G/H of order m
m1

containing HK/H. Clearly K ≤ A. Since |A| = |H||A/H| = mn1 < mn, K is
contained in a subgroup of A of order m by induction.

Case 2. If H is a minimal normal subgroup, then |H| = pr for some prime
p. Since (m,n) = 1 and n | |H|, n = pr and H is a Sylow p-subgroup of G.
H is the only minimal subgroup of G. Every nontrivial normal subgroup of G
contains H.

(i) Let K be a normal subgroup of G such that K/H is a minimal normal
subgroup of G/H. |K/H| = qs for some prime q where q ̸= p. |K| = prqs. Let
S be a Sylow q-subgroup of K and M = NG(S). We shall show |M | = m. Since
H ⊴ K, HS ≤ K. Clearly H ∩ S = ⟨e⟩ so that |HS| = |K| whence HS = K.
Since K ⊴ G,S ≤ K, every conjugate of S in G lies in K. Since S is a Sylow
subgroup of K, all these subgroups are conjugate in K. Let N = NK(S). Let c
be the number of conjugates of S in G. Since S ≤ N ≤ K,K = HN , and

c = [G :M ] = [K : N ] = [HN : N ] = [H : H ∩N ]

We shall show that H ∩ N = ⟨e⟩ so that c = |H| = pr and hence |M | = m.
We first show H ∩ N ≤ C(K) then show C(K) = ⟨e⟩. Let x ∈ H ∩ N and
k ∈ K. Since K = HS, ∃h ∈ H, s ∈ S, k = hs. Since H is abelian, we only
need to show xs = sx. (xsx−1)s−1 ∈ S since x ∈ N . But x(sx−1s−1) ∈ H.
Thus xsx−1s−1 ∈ H ∩ S = ⟨e⟩. It is easy to see that C(K) is a characteristic
subgroup of K. Since K ⊴ G,C(K) ⊴ G. If C(K) ̸= ⟨e⟩, then H ≤ C(K).
This with K = HS implies S ⊴ K. S is a normal Sylow p-subgroup of K and
is thus fully invariant in K, and hence normal in G. This implies H ≤ S, a
contradiction. Thus C(K) = ⟨e⟩.

(ii) Let M be as in (i) and suppose B is a subgroup of G of order m. Note
m | |BK| and prqs | |BK|. Since (m, p) = 1, nm | |BK|. Hence G = BK.
Thus G/K ∼= B/B ∩ K implying that |B ∩ K| = qs. by the second Sylow
theorem, B∩K is conjugate to S in K. Furthermore, B∩K is normal in B and
hence B ≤ NG(B∩K). Conjugate subgroups have conjugate normalizers. Hence
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NG(B∩K) and NG(S) =M are conjugate in G. Thus |NG(B∩K)| = |M | = m.
But |B| = m so B = NG(B ∩K). Thus B and M are conjugate.

(iii) Let D ≤ G, where |D| = k and k | m. Let M and H be as in (i). Then
D ∩H = ⟨e⟩ and |DH| = kpr. Also, |G| = mpr, M ∩H = ⟨e⟩ and MH = G.
Hence M(DH) = G and |M ∩DH| = k. Let M∗ =M ∩DH then by applying
(ii) to DH, M∗ and D are conjugate. ∃a ∈ G, aM∗a−1 = D. Since M∗ ≤ M ,
D ≤ aMa−1 and |aMa−1| = m.
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