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If a positive integer m divides the order of a finite group G, does G have a
subgroup of order m? The answer is true for finite abelian groups, but it is not
true for arbitrary groups. Sylow theorems discuss this situation when m is a
prime power.

Before discussing Sylow theorems, we first discuss group actions.

Definition 1. An action of a group G on a set S is a function G × S → S
denoted (g, x) 7→ gx such that ∀x ∈ S, ∀g1, g2 ∈ G, ex = x and (g1g2)x =
g1(g2x). When such an action is given, we say that G acts on the set S.

Let G is a group and H ≤ G, the action of group H on the set G where
(h, x) 7→ hx is the product on G is called a left translation. The action of H on
G where (h, x) 7→ hxh−1 is called conjugation by h and the element hxh−1 is
said to be a conjugate of x. If K is any subgroup of G and h ∈ H, hKh−1 ∼= K.
Thus H acts on the set S of all subgroups of G by conjugation (h,K) 7→ hKh−1.
The group hKh−1 is said to be conjugate to K.

Lemma 1. Let G be a group acting on a set S

(i) The relation ∼ on S defined by x ∼ x′ ⇐⇒ ∃g ∈ G, gx = x′ is an
equivalence relation.

(ii) ∀x ∈ S,Gx = {g ∈ G | gx = x} is a subgroup of G.

The equivalence classes are called the orbits of G on S, denoted by x̄ for
x ∈ S. The group Gx is called the stabilizer of x. If G acts on itself by
conjugation, the orbits are called conjugacy classes. If a subgroup H acts on G
by conjugation, Hx = {h ∈ H | hxh−1 = x} is called the centralizer of x in H
and is denoted CH(x). CG(x) is simply called the centralizer of x. If H acts by
conjugation on the set S of subgroups of G, the subgroup of H fixing k ∈ S,
{h ∈ H | hKh−1 = K} is called the normalizer of K and is denoted NH(K).
The group NG(K) is simply the normalizer of K. Every subgroup K is normal
in NG(K) and K is normal iff NG(K) = G.

Theorem 1. If a group G acts on a set S, the cardinal number of the orbit of
x ∈ S, is the index [G : Gx].

Proof. Let g, h ∈ G. Since gx = hx ⇐⇒ g−1hx = x ⇐⇒ hGx = gGx it
follows that gGx 7→ gx is a well-defined bijection of the set of cosets of Gx in G
onto x̄. Hence [G : Gx] = |x̄|.

Corollary 1. Let G be a finite group and K ≤ G.
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(i) The number of elements in the conjugacy class of x ∈ G is [G : CG(x)]
which divides |G|

(ii) If x̄1, · · · , x̄n are the distinct conjugacy classes of G, then

|G| =
n∑

i=1

[G : CG(xi)]

(iii) The number of subgroups of G conjugate to K is [G : NG(K)] which divides
|G|.

Proof. (i) and (iii) follow from the previous theorem and Lagrange’s theorem.
Since conjugacy is an equivalence relation, (ii) follows from (i).

Theorem 2. If a group G acts on a set S, this induces a homomorphism
G → A(S), where A(S) is the group of permutations of S.

Proof. If g ∈ G, define τg : S → S by τg(x) = gx. Since x = g(g−1x), τg
is surjective. Similarly, gx = gy implies x = y whence τg is injective. Since
τgg′ = τgτg′ , the map G → A(S) given by g 7→ τg is a homomorphism.

Corollary 2. If G is a group, there is a monomorphism G → A(G). Hence
every group is isomorphic to a group of permutations. In particular, every finite
group G is isomorphic to a subgroup of Sn with n = |G|.

Proof. Let G act on itself by left translation and obtain τ : G → A(G). If
τ(g) = idG, then ∀x ∈ G, gx = x. In particular, ge = e whence g = e and τ is a
monomorphism. Note if |G| = n, A(G) ∼= Sn.

If G is a group, AutG, the set of all automorphisms of G is a group under
composition.

Corollary 3. Let G be a group.

(i) ∀g ∈ G, conjugation by g induces an automorphism of G.

(ii) There is a homomorphism G → AutG whose kernel is C(G) = {g ∈ G |
∀x ∈ G, gx = xg}.

Proof. (i) If G acts on itself by conjugation, τg : G → G given by τg(x) = gxg−1

is a bijection. τg is also a homomorphism and hence an automorphism. (ii) Let
G act on itself by conjugation. The homomorphism τ : G → A(G) has image
contained in AutG. Clearly

g ∈ ker τ ⇐⇒ τg = idG ⇐⇒ ∀x ∈ G, gxg−1 = x

whence ker τ = C(G).
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The automorphism τg is called the inner automorphism induced by g. C(G)
is called the center of G. An element g ∈ C(G) iff the conjugacy class of g
consists of g alone. Thus if x ∈ C(G), then [G : CG(x)] = 1. Thus if G is finite,
then

|G| = |C(G)|+
m∑
i=1

[G : CG(xi)]

where x̄1, x̄2, · · · , x̄m are distinct conjugacy classes of G and each [G : CG(xi)] >
1. The above equation is called the class equation.

Proposition 1. Let H be a subgroup of G and G act on S the set of all left
cosets of H in G by left translation. The kernel of the induced homomorphism
G → A(S) is contained in H.

Proof. The induced homomorphism τ : G → A(S) is given by g 7→ τg where
τg : S → S and τg(xH) = gxH. If g ∈ ker τ, τg = idS and ∀x ∈ G, gxH = xH.
In particular, geH = eH implying g ∈ H.

Corollary 4. If H is a subgroup of index n in a group G and no nontrivial
normal subgroup of G is contained in H, then G is isomorphic to a subgroup of
Sn.

Proof. Apply the proposition. The kernel of the induced homomorphism G →
A(S) is a normal subgroup of G contained in H and thus must be ⟨e⟩. Hence
G → A(S) is a monomorphism.

Corollary 5. If H is a subgroup of a finite group G of index p, where p is the
smallest prime dividing the order of G, then H is normal in G.

Proof. Let S be the set of all left cosets of H in G. Then A(S) ∼= Sp. If K is
the kernel of the homomorphism G → A(S), K ⊴ G and K ⊆ H. Furthermore,
G/K is isomorphic to a subgroup of Sp. Hence |G/K| divides p!. But every
divisor of |G/K| must divide |G|. Thus |G/K| = p or |G/K| = 1. However,
|G/K| = [G : H][H : K] = p[H : K] ≥ p. Thus |G/K| = p and [H : K] = 1,
whence H = K. But K is normal in G.

We now discuss some lemmas that lead to the Sylow theorems.

Lemma 2. If a group H of order pn where p is a prime acts on a finite set S
and if S0 = {s ∈ S | ∀h ∈ H,hx = x}, |S| ≡ |S0| (mod p).

Proof. An orbit x̄ contains exactly one element iff x ∈ S0. Hence S is a disjoint
union S = S0 ⊔

⊔n
i=1 x̄i with |x̄i| > 1 for all i. Hence |S| = |S0| +

∑n
i=1 |x̄i|.

p | |x̄i| for each i since |x̄i| > 1 and |x̄i| = [H : Hxi
] divides |H| = pn. Therefore

|S| ≡ |S0| (mod p).

Theorem 3 (Cauchy). If G is a finite group whose order is divisible by a prime
p, then G contains an element of order p.
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Proof. Let S be the p-tuple of group elements {(a1, a2, · · · , ap) | ai ∈ G, a1a2 · · · ap =
e}. Since ap = (a1a2 · · · ap−1)

−1 necessarily, |S| = np−1, where n = |G|. Since
p | n, |S| ≡ 0 (mod p). Let Zp act on S by cyclic permutations. k(a1, a2, · · · , ap) =
(ak+1, ak+2, · · · , ap, a1, · · · , ak). Note ab = e implies ba = a−1(ab)a = e so that
(ak+1, ak+2, · · · , ap, a1, · · · , ak) ∈ S. Verify that for 0, k, k′ ∈ Zp, x ∈ S, 0x = x
and (k + k′)x = k(k′x). Thus the action is well-defined. Now (a1, a2, · · · , ap) ∈
S0 iff a1 = a2 = · · · = ap. Clearly (e, e, · · · , e) ∈ S0 so |S0| ≠ 0. |S0| ≥ p. There
exists a ̸= e such that (a, a, · · · , a) ∈ S0 and hence ap = e. Since p is prime,
|a| = p.

Definition 2. A group in which every element has order a power of some fixed
prime p is said to be a p-group. If H is a subgroup of a group G and H is a
p-group, H is said to be a p-subgroup of G.

In particular, ⟨e⟩ is always a p-subgroup of G for every prime p.

Corollary 6. A finite group G is a p-group iff |G| is a power of p.

Corollary 7. The center C(G) of a nontrivial finite p-group G contains more
than one element.

Proof. Consider the class equation |G| = |C(G)| +
∑

i[G : CG(xi)]. Since each
[G : CG(xi)] > 1 and divides |G|, p | [G : CG(xi)] and thus p | |C(G)|.

Lemma 3. If H is a p-subgroup of a finite group G, then [NG(H) : H] ≡ [G : H]
(mod p).

Proof. Let S be the set of left cosets of H in G and let H act on S by left
translation. Then |S| = [G : H]. Also,

xH ∈ S0 ⇐⇒ ∀h ∈ H,hxH = xH ⇐⇒ x−1Hx = H ⇐⇒ x ∈ NG(H)

Thus |S0| = [NG(H) : H]. Then [NG(H) : H] = |S0| ≡ |S| = [G : H] (mod p).

Corollary 8. If H is a p-subgroup of a finite group G such that p | [G : H],
then NG(H) ̸= H.

Proof. 0 ≡ [G : H] ≡ [NG(H) : H] (mod p). Since [NG(H) : H] ≥ 1, we must
have [NG(H) : H] > 1. Thus NG(H) ̸= H.

Theorem 4 (First Sylow Theorem). Let G be a group of order pnm with n ∈ N,
p prime, and (p,m) = 1. Then G contains a subgroup of order pi for each
1 ≤ i ≤ n and every subgroup of G of order pi, for i < n that is normal in some
subgroup of order pi+1.

Proof. Since p | |G|, G contains an element of order p.Proceeding by induction,
assume H ≤ G where |H| = pi for 1 ≤ i < n. Then p | [G : H] and H ◁
NG(H), H ̸= NG(H) and 1 < |NG(H)/H| = [NG(H) : H] ≡ [G : H] ≡ 0
(mod p). Hence p | |NG(H)/H| and NG(H)/H contains a subgroup of order p.
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This group is of the form H1/H where H1 is a subgroup of NG(H) containing
H. Since H is normal in NG(H), H is necessarily normal in H1. Finally,
|H1| = |H||H1/H| = pi+1.

Definition 3. A subgroup P of a group G is said to be a Sylow p-subgroup iff
P is a maximal p-subgroup of G.

Sylow p-subgroups always exist, though sometimes they may be trivial, and
every p-subgroup is contained in a Sylow p-subgroup. The first Sylow theorem
shows that a finite group has a nontrivial Sylow p-subgroup for every prime p
that divides the order of G.

Corollary 9. Let G be a group of order pnm with p prime, n ∈ N, (m, p) = 1.
Let H be a p-subgroup of G.

(i) H is a Sylow p-subgroup of G iff |H| = pn

(ii) Every conjugate of a Sylow p-subgroup is a Sylow p-subgroup.

(iii) If there is only one Sylow p-subgroup, it is normal in G.

Theorem 5 (Second Sylow Theorem). If H is a p-subgroup of a finite group G
and P is any Sylow p-subgroup of G, ∃x ∈ G,H ≤ xPx−1. In particular, any
two Sylow p-subgroups are conjugate.

Proof. Let S be the set of left cosets of P in G and let H act on S by left
translation. |S0| ≡ |S| = [G : P ] (mod p). But p ∤ [G : P ]. Thus |S0| ̸= 0 and
there exists xP ∈ S0.

xP ∈ S0 ⇐⇒ ∀h ∈ H,hxP = xP ⇐⇒ xHx−1 ≤ P ⇐⇒ H ≤ x−1Px

If H is a Sylow p-subgroup, |H| = |P | = |x−1Px| and hence H = x−1Px.

Theorem 6 (Third Sylow Theorem). If G is a finite group and p a prime, then
the number of Sylow p-subgroups of G divides |G| and is of the form kp+ 1 for
some k ≥ 0.

Proof. By the second Sylow theorem, the number of Sylow p-subgroups is the
number of conjugates of any one of them, say P . This number is [G : NG(P )],
a divisor of |G|. Let S be the set of all Sylow p-subgroups of G and let P act on
S by conjugation. Then Q ∈ S0 ⇐⇒ ∀x ∈ P, xQx−1 = Q ⇐⇒ P ≤ NG(Q).
Both P and Q are Sylow p-subgroups of G and hence of NG(Q) and are therefore
conjugate in NG(Q). But Q ⊴ NG(Q) meaning Q = P . Thus S0 = {P} and
|S| ≡ |S0| = 1 (mod p).

Theorem 7. If P is a Sylow p-subgroup of a finite group G, then NG(NG(P )) =
NG(P ).

Proof.
x ∈ NG(NG(P )) =⇒ xPx−1 ≤ xNG(P )x−1 = NG(P )

∃y ∈ NG(P ), yPy−1 = xPx−1 =⇒ y−1xPx−1y = P =⇒ x ∈ NG(P )
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