Group actions and Sylow theorems

written by Night Shift in Math on Functor Network original link: https://functor.network/user/854/entry/370

If a positive integer m divides the order of a finite group G, does G have a subgroup of order m? The answer is true for finite abelian groups, but it is not true for arbitrary groups. Sylow theorems discuss this situation when m is a prime power.

Before discussing Sylow theorems, we first discuss group actions.

Definition 1. An action of a group G on a set S is a function $G \times S \to S$ denoted $(g,x) \mapsto gx$ such that $\forall x \in S, \forall g_1, g_2 \in G, ex = x$ and $(g_1g_2)x = g_1(g_2x)$. When such an action is given, we say that G acts on the set S.

Let G is a group and $H \leq G$, the action of group H on the set G where $(h,x) \mapsto hx$ is the product on G is called a left translation. The action of H on G where $(h,x) \mapsto hxh^{-1}$ is called conjugation by h and the element hxh^{-1} is said to be a conjugate of x. If K is any subgroup of G and $h \in H$, $hKh^{-1} \cong K$. Thus H acts on the set S of all subgroups of G by conjugation $(h,K) \mapsto hKh^{-1}$. The group hKh^{-1} is said to be conjugate to K.

Lemma 1. Let G be a group acting on a set S

- (i) The relation \sim on S defined by $x \sim x' \iff \exists g \in G, gx = x'$ is an equivalence relation.
- (ii) $\forall x \in S, G_x = \{g \in G \mid gx = x\}$ is a subgroup of G.

The equivalence classes are called the orbits of G on S, denoted by \bar{x} for $x \in S$. The group G_x is called the stabilizer of x. If G acts on itself by conjugation, the orbits are called conjugacy classes. If a subgroup H acts on G by conjugation, $H_x = \{h \in H \mid hxh^{-1} = x\}$ is called the centralizer of x in H and is denoted $C_H(x)$. $C_G(x)$ is simply called the centralizer of x. If H acts by conjugation on the set S of subgroups of G, the subgroup of H fixing $K \in S$, $\{h \in H \mid hKh^{-1} = K\}$ is called the normalizer of K and is denoted $N_H(K)$. The group $N_G(K)$ is simply the normalizer of K. Every subgroup K is normal in $N_G(K)$ and K is normal iff $N_G(K) = G$.

Theorem 1. If a group G acts on a set S, the cardinal number of the orbit of $x \in S$, is the index $[G:G_x]$.

Proof. Let $g,h \in G$. Since $gx = hx \iff g^{-1}hx = x \iff hG_x = gG_x$ it follows that $gG_x \mapsto gx$ is a well-defined bijection of the set of cosets of G_x in G onto \bar{x} . Hence $[G:G_x] = |\bar{x}|$.

Corollary 1. Let G be a finite group and $K \leq G$.

- (i) The number of elements in the conjugacy class of $x \in G$ is $[G : C_G(x)]$ which divides |G|
- (ii) If $\bar{x}_1, \dots, \bar{x}_n$ are the distinct conjugacy classes of G, then

$$|G| = \sum_{i=1}^{n} [G : C_G(x_i)]$$

(iii) The number of subgroups of G conjugate to K is $[G:N_G(K)]$ which divides |G|.

Proof. (i) and (iii) follow from the previous theorem and Lagrange's theorem. Since conjugacy is an equivalence relation, (ii) follows from (i). \Box

Theorem 2. If a group G acts on a set S, this induces a homomorphism $G \to A(S)$, where A(S) is the group of permutations of S.

Proof. If $g \in G$, define $\tau_g : S \to S$ by $\tau_g(x) = gx$. Since $x = g(g^{-1}x)$, τ_g is surjective. Similarly, gx = gy implies x = y whence τ_g is injective. Since $\tau_{gg'} = \tau_g \tau_{g'}$, the map $G \to A(S)$ given by $g \mapsto \tau_g$ is a homomorphism.

Corollary 2. If G is a group, there is a monomorphism $G \to A(G)$. Hence every group is isomorphic to a group of permutations. In particular, every finite group G is isomorphic to a subgroup of S_n with n = |G|.

Proof. Let G act on itself by left translation and obtain $\tau: G \to A(G)$. If $\tau(g) = \mathrm{id}_G$, then $\forall x \in G, gx = x$. In particular, ge = e whence g = e and τ is a monomorphism. Note if |G| = n, $A(G) \cong S_n$.

If G is a group, Aut G, the set of all automorphisms of G is a group under composition.

Corollary 3. Let G be a group.

- (i) $\forall g \in G$, conjugation by g induces an automorphism of G.
- (ii) There is a homomorphism $G \to \operatorname{Aut} G$ whose kernel is $C(G) = \{g \in G \mid \forall x \in G, gx = xg\}.$

Proof. (i) If G acts on itself by conjugation, $\tau_g: G \to G$ given by $\tau_g(x) = gxg^{-1}$ is a bijection. τ_g is also a homomorphism and hence an automorphism. (ii) Let G act on itself by conjugation. The homomorphism $\tau: G \to A(G)$ has image contained in Aut G. Clearly

$$g \in \ker \tau \iff \tau_g = \mathrm{id}_G \iff \forall x \in G, gxg^{-1} = x$$

whence $\ker \tau = C(G)$.

The automorphism τ_g is called the inner automorphism induced by g. C(G) is called the center of G. An element $g \in C(G)$ iff the conjugacy class of g consists of g alone. Thus if $x \in C(G)$, then $[G:C_G(x)]=1$. Thus if G is finite, then

$$|G| = |C(G)| + \sum_{i=1}^{m} [G : C_G(x_i)]$$

where $\bar{x}_1, \bar{x}_2, \dots, \bar{x}_m$ are distinct conjugacy classes of G and each $[G: C_G(x_i)] > 1$. The above equation is called the class equation.

Proposition 1. Let H be a subgroup of G and G act on S the set of all left cosets of H in G by left translation. The kernel of the induced homomorphism $G \to A(S)$ is contained in H.

Proof. The induced homomorphism $\tau: G \to A(S)$ is given by $g \mapsto \tau_g$ where $\tau_g: S \to S$ and $\tau_g(xH) = gxH$. If $g \in \ker \tau, \tau_g = \operatorname{id}_S$ and $\forall x \in G, gxH = xH$. In particular, geH = eH implying $g \in H$.

Corollary 4. If H is a subgroup of index n in a group G and no nontrivial normal subgroup of G is contained in H, then G is isomorphic to a subgroup of S_n .

Proof. Apply the proposition. The kernel of the induced homomorphism $G \to A(S)$ is a normal subgroup of G contained in H and thus must be $\langle e \rangle$. Hence $G \to A(S)$ is a monomorphism.

Corollary 5. If H is a subgroup of a finite group G of index p, where p is the smallest prime dividing the order of G, then H is normal in G.

Proof. Let S be the set of all left cosets of H in G. Then $A(S) \cong S_p$. If K is the kernel of the homomorphism $G \to A(S)$, $K \subseteq G$ and $K \subseteq H$. Furthermore, G/K is isomorphic to a subgroup of S_p . Hence |G/K| divides p!. But every divisor of |G/K| must divide |G|. Thus |G/K| = p or |G/K| = 1. However, $|G/K| = [G:H][H:K] = p[H:K] \ge p$. Thus |G/K| = p and [H:K] = 1, whence H = K. But K is normal in G.

We now discuss some lemmas that lead to the Sylow theorems.

Lemma 2. If a group H of order p^n where p is a prime acts on a finite set S and if $S_0 = \{s \in S \mid \forall h \in H, hx = x\}, |S| \equiv |S_0| \pmod{p}$.

Proof. An orbit \bar{x} contains exactly one element iff $x \in S_0$. Hence S is a disjoint union $S = S_0 \sqcup \bigsqcup_{i=1}^n \bar{x}_i$ with $|\bar{x}_i| > 1$ for all i. Hence $|S| = |S_0| + \sum_{i=1}^n |\bar{x}_i|$. $p \mid |\bar{x}_i|$ for each i since $|\bar{x}_i| > 1$ and $|\bar{x}_i| = [H:H_{x_i}]$ divides $|H| = p^n$. Therefore $|S| \equiv |S_0| \pmod{p}$.

Theorem 3 (Cauchy). If G is a finite group whose order is divisible by a prime p, then G contains an element of order p.

Proof. Let S be the p-tuple of group elements $\{(a_1,a_2,\cdots,a_p)\mid a_i\in G, a_1a_2\cdots a_p=e\}$. Since $a_p=(a_1a_2\cdots a_{p-1})^{-1}$ necessarily, $|S|=n^{p-1}$, where n=|G|. Since $p\mid n, |S|\equiv 0\pmod{p}$. Let \mathbb{Z}_p act on S by cyclic permutations. $k(a_1,a_2,\cdots,a_p)=(a_{k+1},a_{k+2},\cdots,a_p,a_1,\cdots,a_k)$. Note ab=e implies $ba=a^{-1}(ab)a=e$ so that $(a_{k+1},a_{k+2},\cdots,a_p,a_1,\cdots,a_k)\in S$. Verify that for $0,k,k'\in\mathbb{Z}_p,x\in S,0x=x$ and (k+k')x=k(k'x). Thus the action is well-defined. Now $(a_1,a_2,\cdots,a_p)\in S_0$ iff $a_1=a_2=\cdots=a_p$. Clearly $(e,e,\cdots,e)\in S_0$ so $|S_0|\neq 0$. $|S_0|\geq p$. There exists $a\neq e$ such that $(a,a,\cdots,a)\in S_0$ and hence $a^p=e$. Since p is prime, |a|=p.

Definition 2. A group in which every element has order a power of some fixed prime p is said to be a p-group. If H is a subgroup of a group G and H is a p-group, H is said to be a p-subgroup of G.

In particular, $\langle e \rangle$ is always a *p*-subgroup of G for every prime p.

Corollary 6. A finite group G is a p-group iff |G| is a power of p.

Corollary 7. The center C(G) of a nontrivial finite p-group G contains more than one element.

Proof. Consider the class equation $|G| = |C(G)| + \sum_i [G : C_G(x_i)]$. Since each $[G : C_G(x_i)] > 1$ and divides |G|, $p \mid [G : C_G(x_i)]$ and thus $p \mid |C(G)|$.

Lemma 3. If H is a p-subgroup of a finite group G, then $[N_G(H):H] \equiv [G:H] \pmod{p}$.

Proof. Let S be the set of left cosets of H in G and let H act on S by left translation. Then |S| = [G:H]. Also,

$$xH \in S_0 \iff \forall h \in H, hxH = xH \iff x^{-1}Hx = H \iff x \in N_G(H)$$

Thus
$$|S_0| = [N_G(H): H]$$
. Then $[N_G(H): H] = |S_0| \equiv |S| = [G: H] \pmod{p}$.

Corollary 8. If H is a p-subgroup of a finite group G such that $p \mid [G : H]$, then $N_G(H) \neq H$.

Proof.
$$0 \equiv [G:H] \equiv [N_G(H):H] \pmod{p}$$
. Since $[N_G(H):H] \geq 1$, we must have $[N_G(H):H] > 1$. Thus $N_G(H) \neq H$.

Theorem 4 (First Sylow Theorem). Let G be a group of order $p^n m$ with $n \in \mathbb{N}$, p prime, and (p,m)=1. Then G contains a subgroup of order p^i for each $1 \leq i \leq n$ and every subgroup of G of order p^i , for i < n that is normal in some subgroup of order p^{i+1} .

Proof. Since $p \mid |G|$, G contains an element of order p. Proceeding by induction, assume $H \leq G$ where $|H| = p^i$ for $1 \leq i < n$. Then $p \mid [G:H]$ and $H \triangleleft N_G(H)$, $H \neq N_G(H)$ and $1 < |N_G(H)/H| = [N_G(H):H] \equiv [G:H] \equiv 0 \pmod{p}$. Hence $p \mid |N_G(H)/H|$ and $N_G(H)/H$ contains a subgroup of order p.

This group is of the form H_1/H where H_1 is a subgroup of $N_G(H)$ containing H. Since H is normal in $N_G(H)$, H is necessarily normal in H_1 . Finally, $|H_1| = |H||H_1/H| = p^{i+1}$.

Definition 3. A subgroup P of a group G is said to be a Sylow p-subgroup iff P is a maximal p-subgroup of G.

Sylow p-subgroups always exist, though sometimes they may be trivial, and every p-subgroup is contained in a Sylow p-subgroup. The first Sylow theorem shows that a finite group has a nontrivial Sylow p-subgroup for every prime p that divides the order of G.

Corollary 9. Let G be a group of order $p^n m$ with p prime, $n \in \mathbb{N}$, (m, p) = 1. Let H be a p-subgroup of G.

- (i) H is a Sylow p-subgroup of G iff $|H| = p^n$
- (ii) Every conjugate of a Sylow p-subgroup is a Sylow p-subgroup.
- (iii) If there is only one Sylow p-subgroup, it is normal in G.

Theorem 5 (Second Sylow Theorem). If H is a p-subgroup of a finite group G and P is any Sylow p-subgroup of G, $\exists x \in G, H \leq xPx^{-1}$. In particular, any two Sylow p-subgroups are conjugate.

Proof. Let S be the set of left cosets of P in G and let H act on S by left translation. $|S_0| \equiv |S| = [G:P] \pmod{p}$. But $p \nmid [G:P]$. Thus $|S_0| \neq 0$ and there exists $xP \in S_0$.

$$xP \in S_0 \iff \forall h \in H, hxP = xP \iff xHx^{-1} \le P \iff H \le x^{-1}Px$$

If H is a Sylow p-subgroup, $|H| = |P| = |x^{-1}Px|$ and hence $H = x^{-1}Px$. \square

Theorem 6 (Third Sylow Theorem). If G is a finite group and p a prime, then the number of Sylow p-subgroups of G divides |G| and is of the form kp + 1 for some $k \ge 0$.

Proof. By the second Sylow theorem, the number of Sylow p-subgroups is the number of conjugates of any one of them, say P. This number is $[G:N_G(P)]$, a divisor of |G|. Let S be the set of all Sylow p-subgroups of G and let P act on S by conjugation. Then $Q \in S_0 \iff \forall x \in P, xQx^{-1} = Q \iff P \leq N_G(Q)$. Both P and Q are Sylow p-subgroups of G and hence of $N_G(Q)$ and are therefore conjugate in $N_G(Q)$. But $Q \leq N_G(Q)$ meaning Q = P. Thus $S_0 = \{P\}$ and $|S| \equiv |S_0| = 1 \pmod{p}$.

Theorem 7. If P is a Sylow p-subgroup of a finite group G, then $N_G(N_G(P)) = N_G(P)$.

Proof.

$$x \in N_G(N_G(P)) \implies xPx^{-1} \le xN_G(P)x^{-1} = N_G(P)$$

$$\exists y \in N_G(P), yPy^{-1} = xPx^{-1} \implies y^{-1}xPx^{-1}y = P \implies x \in N_G(P)$$