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If a positive integer m divides the order of a finite group G, does G have a
subgroup of order m? The answer is true for finite abelian groups, but it is not
true for arbitrary groups. Sylow theorems discuss this situation when m is a
prime power.

Before discussing Sylow theorems, we first discuss group actions.

Definition 1. An action of a group G on a set S is a function G X S — S
denoted (g,z) — gz such that Vx € S,¥g1,92 € G,ex = x and (g192)r =
g1(gax). When such an action is given, we say that G acts on the set S.

Let G is a group and H < G, the action of group H on the set G where
(h,z) — hz is the product on G is called a left translation. The action of H on
G where (h,z) — hxh~! is called conjugation by h and the element hah~1! is
said to be a conjugate of x. If K is any subgroup of G and h € H, RKh™' = K.
Thus H acts on the set S of all subgroups of G by conjugation (h, K) — hKh™!.
The group hKh~! is said to be conjugate to K.

Lemma 1. Let G be a group acting on a set S

(i) The relation ~ on S defined by x ~ ' <= g € G,gx = 2’ is an
equivalence relation.

(i) Vx € S,G, = {g € G | gz = z} is a subgroup of G.

The equivalence classes are called the orbits of G on S, denoted by Z for
x € S. The group G, is called the stabilizer of x. If G acts on itself by
conjugation, the orbits are called conjugacy classes. If a subgroup H acts on G
by conjugation, H, = {h € H | hath™! = z} is called the centralizer of x in H
and is denoted Cy(x). Cg(x) is simply called the centralizer of . If H acts by
conjugation on the set S of subgroups of G, the subgroup of H fixing k € S,
{h € H| hKh™! = K} is called the normalizer of K and is denoted Ny (K).
The group Ng(K) is simply the normalizer of K. Every subgroup K is normal
in Ng(K) and K is normal iff Ng(K) = G.

Theorem 1. If a group G acts on a set S, the cardinal number of the orbit of
x € S, is the index [G : Gg].

Proof. Let g,h € G. Since gr = hx <= g 'hr =z <= hG, = gG, it
follows that ¢gG, — gz is a well-defined bijection of the set of cosets of G, in G
onto Z. Hence [G : G;] = |Z|. O

Corollary 1. Let G be a finite group and K < G.



(i) The number of elements in the conjugacy class of x € G is [G : Cg(x)]
which divides |G|

(ii) If T1,- -+ , Ty are the distinct conjugacy classes of G, then

n

G| =[G : Calx)]

i=1

(i1i) The number of subgroups of G conjugate to K is [G : Ng(K)] which divides
Gl

Proof. (i) and (iii) follow from the previous theorem and Lagrange’s theorem.
Since conjugacy is an equivalence relation, (ii) follows from (i). O

Theorem 2. If a group G acts on a set S, this induces a homomorphism
G — A(S), where A(S) is the group of permutations of S.

Proof. If g € G, define 7, : S — S by 74(xz) = gz. Since z = g(g~'z), 7,

is surjective. Similarly, gr = gy implies * = y whence 7, is injective. Since
Tgg = TgTy', the map G — A(S) given by g — 7, is a homomorphism. O

Corollary 2. If G is a group, there is a monomorphism G — A(G). Hence
every group is isomorphic to a group of permutations. In particular, every finite
group G is isomorphic to a subgroup of S, with n = |G)|.

Proof. Let G act on itself by left translation and obtain 7 : G — A(G). If
7(g9) = idg, then Yz € G, g = x. In particular, ge = e whence g = ¢ and 7 is a
monomorphism. Note if |G| =n, A(G) = S,,. O

If G is a group, Aut G, the set of all automorphisms of G is a group under
composition.

Corollary 3. Let G be a group.
(i) Yg € G, conjugation by g induces an automorphism of G.
(i) There is a homomorphism G — Aut G whose kernel is C(G) = {g € G |
Vx € G, gx = xg}.
Proof. (i) If G acts on itself by conjugation, 7, : G — G given by 7,(z) = gzg~*
is a bijection. 7, is also a homomorphism and hence an automorphism. (ii) Let

G act on itself by conjugation. The homomorphism 7 : G — A(G) has image
contained in Aut G. Clearly

geEkert <= 175, =1idg = Ve e G, grg =2

whence ker 7 = C(G). O



The automorphism 7, is called the inner automorphism induced by g. C(G)
is called the center of G. An element g € C(G) iff the conjugacy class of g
consists of g alone. Thus if z € C(G), then [G : Cg(x)] = 1. Thus if G is finite,
then

Gl =1C(G)| + ) _[G = Ca()]
i=1
where Z1, Zg, - - - , Ty, are distinct conjugacy classes of G and each [G : Cg(z;)] >

1. The above equation is called the class equation.

Proposition 1. Let H be a subgroup of G and G act on S the set of all left
cosets of H in G by left translation. The kernel of the induced homomorphism
G — A(S) is contained in H.

Proof. The induced homomorphism 7 : G — A(S) is given by g — 7, where
Tg S — S and 7,(zH) = gzH. If g € ker7,7, = idg and Vz € G, gzH = zH.
In particular, geH = eH implying g € H. U

Corollary 4. If H is a subgroup of index n in a group G and mo nontrivial
normal subgroup of G is contained in H, then G is isomorphic to a subgroup of

Sh.

Proof. Apply the proposition. The kernel of the induced homomorphism G —
A(S) is a normal subgroup of G contained in H and thus must be (e). Hence
G — A(S) is a monomorphism. O

Corollary 5. If H is a subgroup of a finite group G of index p, where p is the
smallest prime dividing the order of G, then H is normal in G.

Proof. Let S be the set of all left cosets of H in G. Then A(S) = S,. If K is
the kernel of the homomorphism G — A(S), K < G and K C H. Furthermore,
G/K is isomorphic to a subgroup of S,. Hence |G/K| divides p!. But every
divisor of |G/K| must divide |G|. Thus |G/K| = p or |G/K| = 1. However,
|G/K| =[G : H|[H : K] =p[H : K] > p. Thus |G/K|=pand [H : K] = 1,
whence H = K. But K is normal in G. O

We now discuss some lemmas that lead to the Sylow theorems.

Lemma 2. If a group H of order p™ where p is a prime acts on a finite set S
and if So ={s € S|Vh € H,hx =z}, |S| =|So| (mod p).

Proof. An orbit T contains exactly one element iff x € Sy. Hence S is a disjoint
union S = So U ||, ; with |z;| > 1 for all i. Hence |S| = [So| + >, |Zi|.
p | |Z;| for each i since |Z;| > 1 and |Z;| = [H : Hy,] divides |H| = p™. Therefore
|S| = [So| (mod p). 0

Theorem 3 (Cauchy). If G is a finite group whose order is divisible by a prime
p, then G contains an element of order p.



Proof. Let S be the p-tuple of group elements {(a1, a2, -+ ,ap) | a; € G,a1a2+--a, =
e}. Since a, = (a1as---ap—1)~ ! necessarily, |S| = nP~!, where n = |G|. Since

p|n,|S| =0 (mod p). Let Z, act on S by cyclic permutations. k(a1,az, - ,a,) =
(@k+1, k42, ap, a1, -+ ,ag). Note ab = e implies ba = a~!(ab)a = e so that
(@ks1, Ahg2, -+, Qp, a1, - ,ax) € S. Verify that for 0,k, k" € Z,,z € S,00 =
and (k + k')z = k(k'z). Thus the action is well-defined. Now (a1, ag,- - ,ap) €
So iff a3 =ag =--- =a,. Clearly (e,e,---,€) € Sy s0 |So| # 0. |So| > p. There
exists a # e such that (a,a,---,a) € Sy and hence a? = e. Since p is prime,
la| = p. O

Definition 2. A group in which every element has order a power of some fixed
prime p is said to be a p-group. If H is a subgroup of a group G and H is a
p-group, H is said to be a p-subgroup of G.

In particular, (e) is always a p-subgroup of G for every prime p.
Corollary 6. A finite group G is a p-group iff |G| is a power of p.

Corollary 7. The center C(G) of a nontrivial finite p-group G contains more
than one element.

Proof. Consider the class equation |G| = |C(G)| + >_,[G : Cg(x;)]. Since each
[G: Ca(z;)] > 1 and divides |G|, p | [G : Cs(x;)] and thus p | |C(G)|. O

Lemma 3. If H is a p-subgroup of a finite group G, then [Ng(H) : H) = [G : H]
(mod p).

Proof. Let S be the set of left cosets of H in G and let H act on S by left
translation. Then |S| = [G : H]. Also,

tH €Sy < Vhe H heH =xH <= 2 'Hx=H <= z € Ng(H)

Thus |So| = [Ng(H) : H]. Then [Ng(H) : H = |So| = |S| =[G : H] (mod p).
O

Corollary 8. If H is a p-subgroup of a finite group G such that p | [G : H],
then Ng(H) # H.

Proof. 0 =[G : H] = [Ng(H) : H] (mod p). Since [Ng(H) : H] > 1, we must
have [Ng(H) : H] > 1. Thus N¢(H) # H. O

Theorem 4 (First Sylow Theorem). Let G be a group of order p™m withn € N,
p prime, and (p,m) = 1. Then G contains a subgroup of order p' for each
1 < i < n and every subgroup of G of order p*, for i < n that is normal in some
subgroup of order p*tt.

Proof. Since p | |G|, G contains an element of order p.Proceeding by induction,
assume H < G where |H| = p' for 1 < i < n. Then p | [G : H] and H <«
Ng(H),H # Ng(H) and 1 < |Ng(H)/H| = [N¢(H) : H =[G : H =0
(mod p). Hence p | |[Ng(H)/H| and Ng(H)/H contains a subgroup of order p.



This group is of the form Hy/H where H; is a subgroup of Ng(H) containing
H. Since H is normal in Ng(H), H is necessarily normal in H;. Finally,
|H| = |H||Hy/H| = p™. O

Definition 3. A subgroup P of a group G is said to be a Sylow p-subgroup iff
P is a maximal p-subgroup of G.

Sylow p-subgroups always exist, though sometimes they may be trivial, and
every p-subgroup is contained in a Sylow p-subgroup. The first Sylow theorem
shows that a finite group has a nontrivial Sylow p-subgroup for every prime p
that divides the order of G.

Corollary 9. Let G be a group of order p™m with p prime, n € N, (m,p) = 1.
Let H be a p-subgroup of G.

(i) H is a Sylow p-subgroup of G iff |H| = p™
(ii) Ewery conjugate of a Sylow p-subgroup is a Sylow p-subgroup.
(#5i) If there is only one Sylow p-subgroup, it is normal in G.

Theorem 5 (Second Sylow Theorem). If H is a p-subgroup of a finite group G
and P is any Sylow p-subgroup of G, Iz € G, H < xPx~'. In particular, any

two Sylow p-subgroups are conjugate.

Proof. Let S be the set of left cosets of P in G and let H act on S by left
translation. |Sp| = |S| = [G : P] (mod p). But p{[G : P]. Thus |Sy| # 0 and
there exists P € Sp.

tPe Sy — VYhe HhtP=2P < zHz ' <P < H<z 'Pz
If H is a Sylow p-subgroup, |H| = |P| = |[¢~'Pz| and hence H = = 'Px. O

Theorem 6 (Third Sylow Theorem). If G is a finite group and p a prime, then
the number of Sylow p-subgroups of G dwides |G| and is of the form kp+1 for
some k > 0.

Proof. By the second Sylow theorem, the number of Sylow p-subgroups is the
number of conjugates of any one of them, say P. This number is [G : Ng(P)],
a divisor of |G|. Let S be the set of all Sylow p-subgroups of G and let P act on
S by conjugation. Then Q € Sy <= Vo € P2Qr"! =Q <= P < Ng(Q).
Both P and @ are Sylow p-subgroups of G and hence of N¢(Q) and are therefore
conjugate in Ng(Q). But @ < Ng(Q) meaning Q = P. Thus Sy = {P} and
[S| = |So| =1 (mod p). O

Theorem 7. If P is a Sylow p-subgroup of a finite group G, then Ng(Ng(P)) =
N¢g(P).

Proof.
z € Ng(Ng(P)) = xPz ' <aNg(P)xz~' = Ng(P)

3y € Ng(P),yPy ! =2Pz™! — y 'aPx 'y =P — z € Ng(P)



