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To discuss the Krull-Schmidt theorem, we must first define the ascending
chain condition and descending chain condition.

Definition 1. A group G is said to satisfy the ascending chain condition (ACC)
on subgroups iff for every chain G1 ≤ G2 ≤ · · · of subgroups of G there is an
integer n such that Gi = Gn for all i ≥ n. G is said to satisfy the descending
chain condition (DCC) on subgroups iff for every chain G1 ≥ G2 ≥ · · · of
subgroups of G there is an integer n such that Gi = Gn for all i ≥ n. We say
G satisfies ACC on normal subgroups if every increasing sequence of normal
subgroups of G eventually becomes constant. Similarly with DCC on normal
subgroups.

Theorem 1. If a group G satisfies either ACC or DCC on normal subgroups,
then G is the direct product of a finite number of indecomposable subgroups.

Proof. Suppose G is not a finite direct product of indecomposable subgroups.
Let S be the set of all normal subgroups H of G such that H is a direct factor
of G and H is not a finite direct product of indecomposable subgroups. Clearly
G ∈ S. If H ∈ S, then H is not indecomposable, whence there exist proper
subgroups KH and JH of H such that H = KH × JH . Furthermore, one of
these groups, say KH , must lie in S. Let f : S → S defined by f(H) = KH .
There exists a function ϕ : N ∪ {0} → S such that ϕ(0) = G and ϕ(n + 1) =
f(ϕ(n)) = Kϕ(n). Denoting ϕ(n) byGn, we have a sequence of normal subgroups
G0, G1, G2, · · · of G such that G > G1 > G2 > · · · . If G satisfies the DCC on
normal subgroups, this is a contradiction. A routine inductive argument shows
∀n ∈ N,

G = Gn × JGn−1 × JGn−2 × · · · × JG0

with each JGi
a proper subgroup of G. Thus there is a properly ascending chain

of normal subgroups:

JG0
< JG1

× JG0
< JG2

× JG1
× JG0

< · · ·

If G satisfies the ACC on normal subgroups, this is a contradiction.

While it was easy to prove the existence of such a decomposition, proving
that such a decomposition is unique turns out to be much more challenging.
Unlike in the existence case, proving uniqueness requires both ACC and DCC
on normal subgroups to hold.

Definition 2. An endomorphism f of a group G is called a normal endomor-
phism iff ∀a, b ∈ G, af(b)a−1 = f(aba−1).

Lemma 1. Let G be a group satisfying the ACC (resp. DCC) on normal sub-
groups and f a normal endomorphism of G. Then f is an automorphism iff f
is an epimorphism (resp. monomorphism).

1



Proof. Suppose G satisfies the ACC and f is an epimorphism. The ascending
chain of normal subgroups

⟨e⟩ ≤ ker f ≤ ker f2 ≤ · · ·

must eventually become constant, say at n. Since f is an epimorphism, so is
fn. If a ∈ G, f(a) = e, a = fn(b) for some b ∈ G and e = f(a) = fn+1(b).
b ∈ ker fn+1 = ker fn so a = fn(b) = e. Thus f is a monomorphism. Next
suppose G satisfies the DCC and f is a monomorphism. ∀k ∈ N, im fk is normal
since f is a normal endomorphism. The descending chain of normal subgroups

G ≥ im f ≥ im f2 ≥ · · ·

must become constant, say at n. ∀a ∈ G, fn(a) = fn+1(b) for some b ∈ G.
Since f is a monomorphism, so is fn and hence fn(a) = fn(f(b)), a = f(b).
Thus f is an epimorphism.

Lemma 2. If G is a group that satisfies both the ACC and DCC on normal
subgroups and f is a normal endomorphism of G, then for some n ∈ N, G =
ker fn × im fn.

Proof. Consider the two chains of normal subgroups:

G ≥ im f ≥ im f2 ≥ · · · , ⟨e⟩ ≤ ker f ≤ ker f2 ≤ · · ·

By hypothesis there is an n such that im fk = im fn, ker fk = ker fn for all
k ≥ n. Suppose a ∈ ker fn ∩ im fn. Then a = fn(b) for some b ∈ G, f2n(b) =
fn(fn(b)) = fn(a) = e. Thus b ∈ ker f2n = ker fn so a = fn(b) = e. Thus
ker fn ∩ im fn = ⟨e⟩. ∀c ∈ G, fn(c) ∈ im fn = im f2n so fn(c) = f2n(d) for
some d ∈ G. fn(cfn(d−1)) = fn(c)f2n(d)−1 = e thus cfn(d−1) ∈ ker fn. Since
c = cfn(d−1)fn(d), G = ker fn × im fn.

Definition 3. An endomorphism f of a group G is said to be nilpotent iff
∃n ∈ N,∀g ∈ G, fn(g) = e.

Corollary 1. If G is an indecomposable group that satisfies both the ACC and
DCC on normal subgroups and f is a normal endomorphism of G, then either
f is nilpotent or f is an automorphism.

Proof. ∃n ∈ N, G = ker fn × im fn. Since G is indecomposable, either ker fn =
⟨e⟩ or im fn = ⟨e⟩. The latter implies f is nilpotent. If ker fn = ⟨e⟩, then ker f =
⟨e⟩ and f is a monomorphism, which implies that f is an automorphism.

We define some unconventional notation: if G is a group and f, g : G → G
are functions, let f + g : G→ G be defined by a 7→ f(a)g(a). With 0G : G→ G
given by a 7→ e, GG is a group under +.

Corollary 2. Let G ̸= ⟨e⟩ be an indecomposable group satisfying both ACC and
DCC on normal subgroups. If f1, · · · , fn are normal nilpotent endomorphisms of
G such that every fi1+· · ·+fir (1 ≤ i1 < i2 < · · · < ir ≤ n) is an endomorphism,
then f1 + f2 + · · ·+ fn is nilpotent.
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Proof. Since each fi1 + · · ·+fir is a normal endomorphism, the proof will follow
by induction once the n = 2 case is established. If f1 + f2 is not nilpotent, it is
an automorphism. Note that the inverse g of f1+f2 is a normal automorphism.
If g1 = f1 ◦g, g2 = f2 ◦g, then idG = g1+g2 and ∀x ∈ G, x−1 = (g1+g2)(x

−1) =
g1(x

−1)g2(x
−1). Thus x = g2(x)g1(x) = (g2 + g1)(x) and idG = g2 + g1. Thus

g1+g2 = g2+g1 = idG and g1◦(g1+g2) = (g1+g2)◦g1 implying g1◦g2 = g2◦g1.
An inductive argument shows that (g1 + g2)

m =
∑m

i=0

(
m
i

)
gi1g

m−i
2 . Since each

fi is nilpotent, gi = fi ◦ g has a nontrivial kernel, whence gi is nilpotent. For
large enough m and all a ∈ G, (g1 + g2)

m(a) =
∑m

i=0

(
m
i

)
gi1g

m−i
2 (a) = e. But

this contradicts that g1 + g2 = idG and G ̸= ⟨e⟩.

Theorem 2 (Krull-Schmidt theorem). Let G be a group that satisfies both ACC
and DCC on normal subgroups. If G = G1 ×G2 × · · · ×Gs and G = H1 ×H2 ×
· · · × Ht with each Gi, Hj indecomposable, then s = t and after reindexing,
Gi

∼= Hi for every i and for each r < t, G = G1 × · · · ×Gr ×Hr+1 × · · · ×Ht.

Proof. Let P (0) be the statement G = H1×H2×· · ·×Ht. For 1 ≤ r ≤ min(s, t),
let P (r) be the statement: there is a reindexing of H1, H2, · · · , Ht such that
Gi

∼= Hi for i ∈ {1, 2, · · · , r} and G = G1×· · ·×Gr×Hr+1×· · ·×Ht. We shall
show inductively that P (r) is true for all r such that 0 ≤ r ≤ min(s, t). P (0) is
true by hypothesis. Assume P (r−1) is true. Gi

∼= Hi for all i ∈ {1, 2, · · · , r−1}
and G = G1 × · · · × Gr−1 × Hr × · · · × Ht. Let π1, · · · , πs be the canonical
epimorphisms to G1, G2, · · · , Gs. Similarly for π′

1, π
′
2, · · · , π′

t to H1, H2, · · · , Ht.
Let λi, λ

′
i be the inclusion map sending Gi, Hi to G. Let ϕi = λi ◦ πi : G → G

and let ψi = λ′i ◦ π′
i : G→ G. Verify the following identities:

ϕi|Gi
= idGi

ϕi ◦ ϕi = ϕi ϕi ◦ ϕj = 0G for i ̸= j

ψ1 + ψ2 + · · ·+ ψt = idG ψi ◦ ψi = ψi ψi ◦ ψj = 0G for i ̸= j

imϕi = Gi imψi = Gi, i < r imψi = Hi for i ≥ r

Thus ϕr ◦ ψi = 0G for all i < r. The identities show that

ϕr = ϕr ◦ idG = ϕr ◦ (ψ1 + · · ·+ ψt) = ϕr ◦ ψr + ϕr ◦ ψr+1 + · · ·+ ϕr ◦ ψt

Every sum of distinct ϕr ◦ ψi is a normal endomorphism. Since ϕr|Gr
= idGr

is
a normal automorphism of Gr and Gr satisfies both ACC and DCC on normal
subgroups, for some j, r ≤ j ≤ t, ϕr ◦ ψj |Gr

is an automorphism on Gr. ∀n ∈
N, (ϕr ◦ ψj)

n+1 is an automorphism of Gr. Since Gr ̸= ⟨e⟩ and (ϕr ◦ ψj)
n+1 =

ϕr(ψj ◦ ϕr)nψj , ψj ◦ ϕr|Hj
: Hj → Hj cannot be nilpotent. Since Hj satisfies

both chain conditions, ψj ◦ ϕr|Hj
must be an automorphism of Hj . Therefore

ψj |Gr
: Gr → Hj is an isomorphism and so is ϕr|Hj

: Hj → Gr. To see this,
note that

(ϕr ◦ ψj)|Gr
= πrϕrψjλr = πrλ

′
jπ

′
jλr

(ψj ◦ ϕr)|Hj
= π′

jψjϕrλ
′
j = π′

jλrπrλ
′
j

ψj |Gr
: Gr → Hj is equivalent to π′

jψjλr = π′
jλr.

ϕr|Hj
: Hj → Gr is equivalent to πrϕrλ

′
j = πrλ

′
j . Reindex the Hk so that we
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may assume j = r and Gr
∼= Hr. Since G = G1×· · ·×Gr−1×Hr×· · ·×Ht by the

induction hypothesis, G1G2 · · ·Gr−1Hr+1 · · ·Ht is an internal direct product.
For j < t, ψr(Gj) = ⟨e⟩ and for j > r, ψr(Hj) = ⟨e⟩. Thus

ψr(G1 · · ·Gr−1Hr+1 · · ·Ht) = ⟨e⟩

Since ψr|Gr
is an isomorphism, Gr ∩ (G1 · · ·Gr−1Hr+1 · · ·Ht) = ⟨e⟩. Thus

G∗ = G1 · · ·GrHr+1 · · ·Ht is an internal direct product. Define θ : G → G as
follows. Every g ∈ G can be written as g = g1 · · · gr−1hr · · ·ht. Let θ(g) =
g1 · · · gr−1ϕr(hr)hr+1 · · ·ht. Clearly im θ = G∗. θ is a monomorphism that
is normal. Thus θ is an automorphism so G = im θ = G∗ = G1 × G2 ×
· · · × Gr × Hr+1 × · · · × Ht. This proves P (r) and completes the inductive
argument. Therefore, after reindexing, G1

∼= Hi for 0 ≤ i ≤ min(s, t). If
min(s, t) = s,G1 × · · · × Gs = G = G1 × · · · × Gs × Hs+1 × · · · × Ht and if
min(s, t) = t, G1 × · · · ×Gs = G = G1 × · · · ×Gt. Since Gi, Hj are not trivial
groups for all i, j, we must have s = t in either case.
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