Krull-Schmidt theorem

written by Night Shift in Math on Functor Network original link: https://functor.network/user/854/entry/369

To discuss the Krull-Schmidt theorem, we must first define the ascending chain condition and descending chain condition.

Definition 1. A group G is said to satisfy the ascending chain condition (ACC) on subgroups iff for every chain $G_1 \leq G_2 \leq \cdots$ of subgroups of G there is an integer n such that $G_i = G_n$ for all $i \geq n$. G is said to satisfy the descending chain condition (DCC) on subgroups iff for every chain $G_1 \geq G_2 \geq \cdots$ of subgroups of G there is an integer n such that $G_i = G_n$ for all $i \geq n$. We say G satisfies ACC on normal subgroups if every increasing sequence of normal subgroups of G eventually becomes constant. Similarly with DCC on normal subgroups.

Theorem 1. If a group G satisfies either ACC or DCC on normal subgroups, then G is the direct product of a finite number of indecomposable subgroups.

Proof. Suppose G is not a finite direct product of indecomposable subgroups. Let S be the set of all normal subgroups H of G such that H is a direct factor of G and H is not a finite direct product of indecomposable subgroups. Clearly $G \in S$. If $H \in S$, then H is not indecomposable, whence there exist proper subgroups K_H and J_H of H such that $H = K_H \times J_H$. Furthermore, one of these groups, say K_H , must lie in S. Let $f: S \to S$ defined by $f(H) = K_H$. There exists a function $\phi: \mathbb{N} \cup \{0\} \to S$ such that $\phi(0) = G$ and $\phi(n+1) = f(\phi(n)) = K_{\phi(n)}$. Denoting $\phi(n)$ by G_n , we have a sequence of normal subgroups G_0, G_1, G_2, \cdots of G such that $G > G_1 > G_2 > \cdots$. If G satisfies the DCC on normal subgroups, this is a contradiction. A routine inductive argument shows $\forall n \in \mathbb{N}$,

$$G = G_n \times J_{G_{n-1}} \times J_{G_{n-2}} \times \cdots \times J_{G_0}$$

with each J_{G_i} a proper subgroup of G. Thus there is a properly ascending chain of normal subgroups:

$$J_{G_0} < J_{G_1} \times J_{G_0} < J_{G_2} \times J_{G_1} \times J_{G_0} < \cdots$$

If G satisfies the ACC on normal subgroups, this is a contradiction.

While it was easy to prove the existence of such a decomposition, proving that such a decomposition is unique turns out to be much more challenging. Unlike in the existence case, proving uniqueness requires both ACC and DCC on normal subgroups to hold.

Definition 2. An endomorphism f of a group G is called a normal endomorphism iff $\forall a, b \in G, af(b)a^{-1} = f(aba^{-1})$.

Lemma 1. Let G be a group satisfying the ACC (resp. DCC) on normal subgroups and f a normal endomorphism of G. Then f is an automorphism iff f is an epimorphism (resp. monomorphism).

Proof. Suppose G satisfies the ACC and f is an epimorphism. The ascending chain of normal subgroups

$$\langle e \rangle \le \ker f \le \ker f^2 \le \cdots$$

must eventually become constant, say at n. Since f is an epimorphism, so is f^n . If $a \in G$, f(a) = e, $a = f^n(b)$ for some $b \in G$ and $e = f(a) = f^{n+1}(b)$. $b \in \ker f^{n+1} = \ker f^n$ so $a = f^n(b) = e$. Thus f is a monomorphism. Next suppose G satisfies the DCC and f is a monomorphism. $\forall k \in \mathbb{N}$, $\operatorname{im} f^k$ is normal since f is a normal endomorphism. The descending chain of normal subgroups

$$G \ge \operatorname{im} f \ge \operatorname{im} f^2 \ge \cdots$$

must become constant, say at n. $\forall a \in G, f^n(a) = f^{n+1}(b)$ for some $b \in G$. Since f is a monomorphism, so is f^n and hence $f^n(a) = f^n(f(b)), a = f(b)$. Thus f is an epimorphism.

Lemma 2. If G is a group that satisfies both the ACC and DCC on normal subgroups and f is a normal endomorphism of G, then for some $n \in \mathbb{N}, G = \ker f^n \times \operatorname{im} f^n$.

Proof. Consider the two chains of normal subgroups:

$$G \ge \operatorname{im} f \ge \operatorname{im} f^2 \ge \cdots, \quad \langle e \rangle \le \ker f \le \ker f^2 \le \cdots$$

By hypothesis there is an n such that im $f^k = \operatorname{im} f^n$, $\ker f^k = \ker f^n$ for all $k \geq n$. Suppose $a \in \ker f^n \cap \operatorname{im} f^n$. Then $a = f^n(b)$ for some $b \in G$, $f^{2n}(b) = f^n(f^n(b)) = f^n(a) = e$. Thus $b \in \ker f^{2n} = \ker f^n$ so $a = f^n(b) = e$. Thus $\ker f^n \cap \operatorname{im} f^n = \langle e \rangle$. $\forall c \in G, f^n(c) \in \operatorname{im} f^n = \operatorname{im} f^{2n}$ so $f^n(c) = f^{2n}(d)$ for some $d \in G$. $f^n(cf^n(d^{-1})) = f^n(c)f^{2n}(d)^{-1} = e$ thus $cf^n(d^{-1}) \in \ker f^n$. Since $c = cf^n(d^{-1})f^n(d)$, $G = \ker f^n \times \operatorname{im} f^n$.

Definition 3. An endomorphism f of a group G is said to be nilpotent iff $\exists n \in \mathbb{N}, \forall g \in G, f^n(g) = e$.

Corollary 1. If G is an indecomposable group that satisfies both the ACC and DCC on normal subgroups and f is a normal endomorphism of G, then either f is nilpotent or f is an automorphism.

Proof. $\exists n \in \mathbb{N}, G = \ker f^n \times \operatorname{im} f^n$. Since G is indecomposable, either $\ker f^n = \langle e \rangle$ or $\operatorname{im} f^n = \langle e \rangle$. The latter implies f is nilpotent. If $\ker f^n = \langle e \rangle$, then $\ker f = \langle e \rangle$ and f is a monomorphism, which implies that f is an automorphism. \square

We define some unconventional notation: if G is a group and $f, g: G \to G$ are functions, let $f+g: G \to G$ be defined by $a \mapsto f(a)g(a)$. With $0_G: G \to G$ given by $a \mapsto e$, G^G is a group under +.

Corollary 2. Let $G \neq \langle e \rangle$ be an indecomposable group satisfying both ACC and DCC on normal subgroups. If f_1, \dots, f_n are normal nilpotent endomorphisms of G such that every $f_{i_1} + \dots + f_{i_r} (1 \leq i_1 < i_2 < \dots < i_r \leq n)$ is an endomorphism, then $f_1 + f_2 + \dots + f_n$ is nilpotent.

Proof. Since each $f_{i_1}+\cdots+f_{i_r}$ is a normal endomorphism, the proof will follow by induction once the n=2 case is established. If f_1+f_2 is not nilpotent, it is an automorphism. Note that the inverse g of f_1+f_2 is a normal automorphism. If $g_1=f_1\circ g, g_2=f_2\circ g$, then $\mathrm{id}_G=g_1+g_2$ and $\forall x\in G, x^{-1}=(g_1+g_2)(x^{-1})=g_1(x^{-1})g_2(x^{-1})$. Thus $x=g_2(x)g_1(x)=(g_2+g_1)(x)$ and $\mathrm{id}_G=g_2+g_1$. Thus $g_1+g_2=g_2+g_1=\mathrm{id}_G$ and $g_1\circ (g_1+g_2)=(g_1+g_2)\circ g_1$ implying $g_1\circ g_2=g_2\circ g_1$. An inductive argument shows that $(g_1+g_2)^m=\sum_{i=0}^m\binom{m}{i}g_1^ig_2^{m-i}$. Since each f_i is nilpotent, $g_i=f_i\circ g$ has a nontrivial kernel, whence g_i is nilpotent. For large enough m and all $a\in G$, $(g_1+g_2)^m(a)=\sum_{i=0}^m\binom{m}{i}g_1^ig_2^{m-i}(a)=e$. But this contradicts that $g_1+g_2=\mathrm{id}_G$ and $G\neq \langle e\rangle$.

Theorem 2 (Krull-Schmidt theorem). Let G be a group that satisfies both ACC and DCC on normal subgroups. If $G = G_1 \times G_2 \times \cdots \times G_s$ and $G = H_1 \times H_2 \times \cdots \times H_t$ with each G_i, H_j indecomposable, then s = t and after reindexing, $G_i \cong H_i$ for every i and for each r < t, $G = G_1 \times \cdots \times G_r \times H_{r+1} \times \cdots \times H_t$.

Proof. Let P(0) be the statement $G = H_1 \times H_2 \times \cdots \times H_t$. For $1 \le r \le \min(s,t)$, let P(r) be the statement: there is a reindexing of H_1, H_2, \cdots, H_t such that $G_i \cong H_i$ for $i \in \{1, 2, \cdots, r\}$ and $G = G_1 \times \cdots \times G_r \times H_{r+1} \times \cdots \times H_t$. We shall show inductively that P(r) is true for all r such that $0 \le r \le \min(s,t)$. P(0) is true by hypothesis. Assume P(r-1) is true. $G_i \cong H_i$ for all $i \in \{1, 2, \cdots, r-1\}$ and $G = G_1 \times \cdots \times G_{r-1} \times H_r \times \cdots \times H_t$. Let π_1, \cdots, π_s be the canonical epimorphisms to G_1, G_2, \cdots, G_s . Similarly for $\pi'_1, \pi'_2, \cdots, \pi'_t$ to H_1, H_2, \cdots, H_t . Let λ_i, λ'_i be the inclusion map sending G_i, H_i to G. Let $\phi_i = \lambda_i \circ \pi_i : G \to G$ and let $\psi_i = \lambda'_i \circ \pi'_i : G \to G$. Verify the following identities:

$$\begin{split} \phi_i|_{G_i} &= \mathrm{id}_{G_i} \quad \phi_i \circ \phi_i = \phi_i \\ \psi_1 + \psi_2 + \dots + \psi_t &= \mathrm{id}_G \quad \psi_i \circ \psi_i = \psi_i \\ &\mathrm{im}\, \phi_i = G_i \quad \mathrm{im}\, \psi_i = G_i, i < r \end{split} \qquad \begin{split} \phi_i \circ \phi_j &= 0_G \text{ for } i \neq j \\ \psi_i \circ \psi_j &= 0_G \text{ for } i \neq j \\ \mathrm{im}\, \psi_i &= H_i \text{ for } i \geq r \end{split}$$

Thus $\phi_r \circ \psi_i = 0_G$ for all i < r. The identities show that

$$\phi_r = \phi_r \circ \mathrm{id}_G = \phi_r \circ (\psi_1 + \dots + \psi_t) = \phi_r \circ \psi_r + \phi_r \circ \psi_{r+1} + \dots + \phi_r \circ \psi_t$$

Every sum of distinct $\phi_r \circ \psi_i$ is a normal endomorphism. Since $\phi_r|_{G_r} = \mathrm{id}_{G_r}$ is a normal automorphism of G_r and G_r satisfies both ACC and DCC on normal subgroups, for some $j, r \leq j \leq t, \ \phi_r \circ \psi_j|_{G_r}$ is an automorphism on G_r . $\forall n \in \mathbb{N}, (\phi_r \circ \psi_j)^{n+1}$ is an automorphism of G_r . Since $G_r \neq \langle e \rangle$ and $(\phi_r \circ \psi_j)^{n+1} = \phi_r (\psi_j \circ \phi_r)^n \psi_j, \ \psi_j \circ \phi_r|_{H_j} : H_j \to H_j$ cannot be nilpotent. Since H_j satisfies both chain conditions, $\psi_j \circ \phi_r|_{H_j}$ must be an automorphism of H_j . Therefore $\psi_j|_{G_r} : G_r \to H_j$ is an isomorphism and so is $\phi_r|_{H_j} : H_j \to G_r$. To see this, note that

$$\begin{split} (\phi_r \circ \psi_j)|_{G_r} &= \pi_r \phi_r \psi_j \lambda_r = \pi_r \lambda_j' \pi_j' \lambda_r \\ (\psi_j \circ \phi_r)|_{H_j} &= \pi_j' \psi_j \phi_r \lambda_j' = \pi_j' \lambda_r \pi_r \lambda_j' \end{split}$$

 $\psi_j|_{G_r}: G_r \to H_j$ is equivalent to $\pi'_j \psi_j \lambda_r = \pi'_j \lambda_r$. $\phi_r|_{H_j}: H_j \to G_r$ is equivalent to $\pi_r \phi_r \lambda'_j = \pi_r \lambda'_j$. Reindex the H_k so that we may assume j=r and $G_r\cong H_r$. Since $G=G_1\times\cdots\times G_{r-1}\times H_r\times\cdots\times H_t$ by the induction hypothesis, $G_1G_2\cdots G_{r-1}H_{r+1}\cdots H_t$ is an internal direct product. For $j< t, \psi_r(G_j)=\langle e\rangle$ and for $j>r, \psi_r(H_j)=\langle e\rangle$. Thus

$$\psi_r(G_1 \cdots G_{r-1} H_{r+1} \cdots H_t) = \langle e \rangle$$

Since $\psi_r|_{G_r}$ is an isomorphism, $G_r\cap (G_1\cdots G_{r-1}H_{r+1}\cdots H_t)=\langle e\rangle$. Thus $G^*=G_1\cdots G_rH_{r+1}\cdots H_t$ is an internal direct product. Define $\theta:G\to G$ as follows. Every $g\in G$ can be written as $g=g_1\cdots g_{r-1}h_r\cdots h_t$. Let $\theta(g)=g_1\cdots g_{r-1}\phi_r(h_r)h_{r+1}\cdots h_t$. Clearly im $\theta=G^*$. θ is a monomorphism that is normal. Thus θ is an automorphism so $G=\operatorname{im}\theta=G^*=G_1\times G_2\times\cdots\times G_r\times H_{r+1}\times\cdots\times H_t$. This proves P(r) and completes the inductive argument. Therefore, after reindexing, $G_1\cong H_i$ for $0\leq i\leq \min(s,t)$. If $\min(s,t)=s,G_1\times\cdots\times G_s=G=G_1\times\cdots\times G_s\times H_{s+1}\times\cdots\times H_t$ and if $\min(s,t)=t,G_1\times\cdots\times G_s=G=G_1\times\cdots\times G_t$. Since G_i,H_j are not trivial groups for all i,j, we must have s=t in either case. \square