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To discuss the Krull-Schmidt theorem, we must first define the ascending
chain condition and descending chain condition.

Definition 1. A group G is said to satisfy the ascending chain condition (ACC)
on subgroups iff for every chain G1 < Go < --- of subgroups of G there is an
integer n such that G; = G, for all © > n. G is said to satisfy the descending
chain condition (DCC) on subgroups iff for every chain G4 > Gy > -+ of
subgroups of G there is an integer n such that G; = Gy, for all i > n. We say
G satisfies ACC on normal subgroups if every increasing sequence of normal
subgroups of G eventually becomes constant. Similarly with DCC on normal
subgroups.

Theorem 1. If a group G satisfies either ACC or DCC on normal subgroups,
then G is the direct product of a finite number of indecomposable subgroups.

Proof. Suppose G is not a finite direct product of indecomposable subgroups.
Let S be the set of all normal subgroups H of G such that H is a direct factor
of G and H is not a finite direct product of indecomposable subgroups. Clearly
G e S. If H €S, then H is not indecomposable, whence there exist proper
subgroups Ky and Jy of H such that H = Ky x Jy. Furthermore, one of
these groups, say Ky, must lie in S. Let f : S — S defined by f(H) = Kg.
There exists a function ¢ : NU {0} — S such that ¢(0) = G and ¢(n +1) =
f(#(n)) = Kg(n). Denoting ¢(n) by G, we have a sequence of normal subgroups
Go,G1,Gq, -+ of G such that G > Gy > G4 > ---. If G satisfies the DCC on
normal subgroups, this is a contradiction. A routine inductive argument shows
Vn € N,

G = Gn X JG

with each Jg, a proper subgroup of G. Thus there is a properly ascending chain
of normal subgroups:

X Ja,_, X - X Jag,

n—1

JGO <JG1 XJGO <JGQ XJGl X JGO < -
If G satisfies the ACC on normal subgroups, this is a contradiction. O

While it was easy to prove the existence of such a decomposition, proving
that such a decomposition is unique turns out to be much more challenging.
Unlike in the existence case, proving uniqueness requires both ACC and DCC
on normal subgroups to hold.

Definition 2. An endomorphism f of a group G is called a normal endomor-
phism iff Va,b € G,af(b)a™t = f(aba™1).

Lemma 1. Let G be a group satisfying the ACC (resp. DCC) on normal sub-
groups and f a normal endomorphism of G. Then f is an automorphism iff f
is an epimorphism (resp. monomorphism).



Proof. Suppose G satisfies the ACC and f is an epimorphism. The ascending
chain of normal subgroups

(e) <ker f <kerf*< .-

must eventually become constant, say at n. Since f is an epimorphism, so is
fr. Ifa € G, f(a) = e;a = f*(b) for some b € G and e = f(a) = f*T1(b).
b € ker "1 = ker f* so a = f*(b) = e. Thus f is a monomorphism. Next
suppose G satisfies the DCC and f is a monomorphism. Vk € N, im f* is normal
since f is a normal endomorphism. The descending chain of normal subgroups

G>imf>imf>>--.

must become constant, say at n. Va € G, f*(a) = f**1(b) for some b € G.
Since f is a monomorphism, so is f™ and hence f™(a) = f™(f(b)),a = f(b).
Thus f is an epimorphism. O

Lemma 2. If G is a group that satisfies both the ACC and DCC on normal
subgroups and f is a normal endomorphism of G, then for some n € NG =
ker f™ x im f™.

Proof. Consider the two chains of normal subgroups:
G>imf>imf*>--., (e) <kerf <kerf?<--.

By hypothesis there is an n such that im f* = im f ker f¥ = ker f™ for all
k > n. Suppose a € ker f* Nim f". Then a = f™(b) for some b € G, f?*(b) =
f(f™(b)) = f*(a) = e. Thus b € ker f?" = ker f" so a = f*(b) = e. Thus
ker f* Nim " = (e). Ve € G, f(c) € im f* = im f?" so f"(c) = f**(d) for
some d € G. f*(cf*(d™1)) = f*(c)f*"(d)~! = e thus c¢f"(d~') € ker ™. Since
c=cf™(d 1) f*(d), G = ker f* x im f". O

Definition 3. An endomorphism f of a group G is said to be nilpotent iff
IneN,Vge G, f*(g) =e.

Corollary 1. If G is an indecomposable group that satisfies both the ACC and
DCC on normal subgroups and f is a normal endomorphism of G, then either
f is nilpotent or f is an automorphism.

Proof. In € N, G = ker f™ x im f™. Since G is indecomposable, either ker f™ =
(e) orim f™ = (e). The latter implies f is nilpotent. If ker ™ = (e), then ker f =
(e) and f is a monomorphism, which implies that f is an automorphism. O

We define some unconventional notation: if G is a group and f,g: G — G
are functions, let f+¢: G — G be defined by a — f(a)g(a). With 0 : G — G
given by a — e, GY is a group under +.

Corollary 2. Let G # (e) be an indecomposable group satisfying both ACC and
DCC on normal subgroups. If f1,-- -, fn are normal nilpotent endomorphisms of
G such that every fi, +- -+ fi,. (1 <y < ig < -+ < i, < n)is an endomorphism,
then fi + fo +--- 4 fn is nilpotent.



Proof. Since each f;, +---+ fi. is a normal endomorphism, the proof will follow
by induction once the n = 2 case is established. If f; + fo is not nilpotent, it is
an automorphism. Note that the inverse g of fi + fo is a normal automorphism.
If g1 = fiog,92 = fo0g, thenidg = g1 +g2 and Vo € G, 27! = (g1 +go)(x7 1) =
g1(z7)g2(a™"). Thus z = ga(z)g1(z) = (92 + g1)(2) and idg = g2 + g1. Thus
g1+g2 = ga+g1 = idg and g10(g1+g2) = (91+92)0g1 implying g1og2 = g209:1.

An inductive argument shows that (g1 + g2)™ = >~ (") gigy’ ™" Since each
fi is nilpotent, g; = f; o ¢ has a nontrivial kernel, whence g; is nilpotent. For
large enough m and all a € G, (g1 + g2)™(a) = it (7)gig5" "(a) = e. But
this contradicts that g1 + g2 = idg and G # (e). O
Theorem 2 (Krull-Schmidt theorem). Let G be a group that satisfies both ACC
and DCC on normal subgroups. If G = Gy X Go X --- X G4 and G = Hy x Hy X

- X Hy with each Gy, H; indecomposable, then s = t and after reindexing,

G; =2 H; for every i and for eachr <t, G =Gy X -+ X G X Hp.y1 X --- X Hy.

Proof. Let P(0) be the statement G = Hy x Hy X+ -+ x Hy. For 1 <r < min(s,t),
let P(r) be the statement: there is a reindexing of Hy, Hs,---, H; such that
G; 2 H;forie{l,2,--- ,r}and G=Gy x---x Gp X Hpy1 X---x Hy. We shall
show inductively that P(r) is true for all r such that 0 < r < min(s,t). P(0) is
true by hypothesis. Assume P(r—1)is true. G; = H; for alli € {1,2,--- ,r—1}
and G = Gy X -+ X Gy X H. x --- x Hy. Let my,---,ms be the canonical
epimorphisms to G1, Ga, - - - , Gs. Similarly for 7}, 7h, -+ , 7} to Hy, Ha,--- , Hy.
Let A;, A, be the inclusion map sending G;, H; to G. Let ¢, = N\jom; : G — G
and let ¢; = A, o7} : G — G. Verify the following identities:

bilg, =ide, ¢iodi=¢i ¢iop; =0¢ for i #j
Y+t =ide Yo =4 Y;01p; = 0¢ for i # j
im¢; =G; imy;, =Gi<r im; = H; for i >r

Thus ¢, o1; = 0¢ for all ¢ < r. The identities show that

¢T:¢roidG:(bro(’(/)l'f"""'wt):¢rowr+¢rowr+1+"'+¢rowt

Every sum of distinct ¢,. o ¢; is a normal endomorphism. Since ¢T|Gr =idg, is
a normal automorphism of GG, and G, satisfies both ACC and DCC on normal
subgroups, for some j, r < j <t, ¢ 0 z/)j|Gr is an automorphism on G,. Vn €
N, (¢, 0 ¢;)" ! is an automorphism of G,.. Since G, # (e) and (¢, o ;)" =
Or () 0 Op)" Y, 5 0 ¢T|Hj : H; — Hj; cannot be nilpotent. Since H; satisfies
both chain conditions, 1; o ¢, H, must be an automorphism of H;. Therefore
1/’J'|GT, : G, — Hj is an isomorphism and so is ¢T|HJ : H; — G,. To see this,
note that
(¢r o wj)‘GT = Wr(brwj)\r = Wr)\;ﬂ-;‘)\r

('(/)j © (br)'Hj = 7T;¢g¢r)\3 = W;‘Arﬂ'r)\;‘

Vjlg, + Gr — Hj is equivalent to miy; A, = miA,.
¢T.|HJ_ : Hj — G, is equivalent to 7r,.¢r>\;- = 7rr/\;-. Reindex the Hj, so that we



may assume j = r and G & H,.. Since G = Gy X+ xXG._1 X H.Xx---x H; by the
induction hypothesis, G1Gy---G,_1H,41--- H; is an internal direct product.
For j < t,¢,(G;) = (e) and for j > r,¢,(H;) = (e). Thus

'(/JT(GI T Grleerl o Ht) = <€>

Since ql)T‘GT is an isomorphism, G, N (G1 -+ Gr—1H,11---H;) = (). Thus
G* =Gy---Gr-H,;1--- Hy is an internal direct product. Define § : G — G as
follows. Every g € G can be written as ¢ = g1+ gr—1hy---he. Let 0(g) =
g1 Gr—1Gr(hyp)hpyr -+ -he. Clearly im0 = G*. 6 is a monomorphism that
is normal. Thus # is an automorphism so G = imf = G* = Gy x Gg X

+ X Gy X Hyyq X -+- x Hy. This proves P(r) and completes the inductive
argument. Therefore, after reindexing, Gi = H; for 0 < ¢ < min(s,t). If
min(s,t) = 8,G; X - X Gs = G = Gy X -+ X Gy X Hgyq X --- x Hy and if
min(s,t) =¢, Gy x -+ X Gg = G =Gy X --- x Gy. Since G;, H; are not trivial
groups for all 7, j, we must have s = ¢ in either case. O



