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Finitely generated abelian groups have a structure theorem, which makes
them easy to describe and enumerate completely. The structure theorem states
that every finitely generated abelian group is a direct sum of Z and Zpk where
p is a prime.

Definition 1. A group G is indecomposable iff G ̸= ⟨e⟩ and G is not the internal
direct product of two of its proper subgroups.

Lemma 1. Z and Zpk for p a prime are indecomposable.

Proof. Every nontrivial subgroup of Z is cyclic. Any two nontrivial subgroups
⟨n⟩, ⟨m⟩ have a non-trivial intersection at (n,m). Thus Z cannot be a direct
sum of those subgroups, hence Z is indecomposable. Suppose Zpn = A⊕B is a
nontrivial decomposition with |A| = pa and |B| = pb with 0 < a, b < n. Then
pmax(a,b)Zpn = pmax(a,b)A ⊕ pmax(a,b)B = 0 which is a contradiction since Zpn

has an element of order pn > pmax(a,b).

In other words, the structure theorem says that every finitely generated
abelian group is the direct sum of a finite number of indecomposable groups.

Lemma 2. Zr ⊕ Zn is cyclic iff gcd(r, n) = 1.

This lemma suggests that we can combine the prime powers for distinct
primes for a different representation. Before we discuss the structure theorem,
a helpful lemma:

Lemma 3. Let G be an abelian group, m ∈ Z, p a prime integer. Each of the
following is a subgroup of G:

1. mG = {mu | u ∈ G}

2. G[m] = {u ∈ G | mu = 0}

3. G(p) = {u ∈ G | ∃n ∈ N ∪ {0}, |u| = pn}

4. Gt = {u ∈ G | |u| < ∞}

Let n,m be positive integers, H and Gi be abelian groups. There are isomor-
phisms

5. ∀n,m,m < n,Zpn [p] ∼= Zp and pmZpn ∼= Zpn−m .

6. If g : G →
⊕

i∈I Gi is an isomorphism, the restrictions of g to mG and
G[m] respectively are isomorphisms mG ∼=

⊕
i∈I mGi, G[m] ∼=

⊕
i∈I Gi[m]

7. If f : G → H is an isomorphism, the restrictions of f to Gt and G(p)
respectively are isomorphisms Gt

∼= Ht and G(p) ∼= H(p).
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Finally, we state the structure theorem.

Theorem 1 (Structure Theorem for Finitely Generated Abelian Groups). Let
G be a finitely generated abelian group.

1. There is a unique nonnegative integer s such that the number of infinite
cyclic summands in any decomposition of G as a direct sum of cyclic
groups is precisely s.

2. Either G is free abelian or there is a unique list of not necessarily distinct
positive integers m1, · · · ,mt such that m1 | m2 | · · · | mt and

G ∼= Zm1
⊕ Zm2

⊕ · · · ⊕ Zmt
⊕ F

with F free abelian.

3. Either G is free abelian or there is a list of positive integers ps11 , · · · , pskk
which is unique except for the order of its members such that p1, p2, · · · , pk
are primes that are not necessarily distinct and s1, s2, · · · , sk are positive
integers that are not necessarily distinct and

G ∼= Zp
s1
1

⊕ Zp
s2
2

⊕ · · · ⊕ Zp
sk
k

⊕ F

with F free abelian.

We omit the proof as it is quite lengthy, but it only uses elementary methods.
If G is a finitely generated abelian group, then the uniquely determined integers
m1,m2, · · · ,mt are called the invariant factors of G. The uniquely determined
prime powers are called the elementary divisors of G.

Corollary 1. Two finitely generated abelian groups G and H are isomorphic
iff G/Gt and H/Ht have the same rank and G and H have the same invariant
factors (resp. elementary divisors).

As an example, consider describing all finite abelian groups of order 1500
up to isomorphism. 1500 = 22 · 3 · 53. The only possible families of elementary
divisors are

{2, 2, 3, 53}, {2, 2, 3, 5, 52}, {2, 2, 3, 5, 5, 5}, {22, 3, 53}, {22, 3, 5, 52}, {22, 3, 5, 5, 5}.

In general, the number of families of elementary divisors depends on the integer
partitions of the powers of the primes in the prime decomposition. Each of these
six families determines an abelian group of order 1500. E.g. {2, 2, 3, 53} deter-
mines Z2 ⊕ Z2 ⊕ Z3 ⊕ Z125. From the list of families of elementary divisors, we
can derive an equivalent list of families of invariant factors, and vice versa. Sup-
pose that an invariant factor decomposition m1,m2, · · · ,mt were known. Then
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the elementary divisors are the prime powers that arise from the prime factor-
izations of m1,m2, · · · ,mt. Conversely, if the elementary divisors are known,
one can arrange them in a matrix:

pn11
1 pn12

2 · · · pn1r
r

pn21
1 pn22

2 · · · pn2r
r

...
...

. . .
...

pnt1
1 pnt2

2 · · · pntr
r

where p1, p2, · · · , pr are distinct primes, ∀j, 0 ≤ n1j ≤ n2j ≤ · · · ≤ ntj with some
nij ̸= 0 and n1j ̸= 0 for some j. While this is a sufficient description, some
observations that make this process easier to visualize: the last row contains
the highest prime powers for each prime with no zero exponents. The first row
contains nonzero exponents for the primes with the most amount of prime power
terms in the family. Let mi = pni1

1 pni2
2 · · · pnir

r . By construction, m1 | m2 | · · · |
mt and we have constructed the invariant factors.

As an example, consider G = Z5 ⊕ Z15 ⊕ Z25 ⊕ Z36 ⊕ Z54. Then,

G ∼= Z5 ⊕ (Z3 ⊕ Z5)⊕ Z25 ⊕ (Z4 ⊕ Z9)⊕ (Z2 ⊕ Z27)

The elementary divisors of G are thus 2, 22, 3, 32, 33, 5, 5, 52. This can be ar-
ranged as

20 3 5
2 32 5
22 33 52

Thus the invariant factors of G are 15, 90, 2700 so that G ∼= Z15 ⊕ Z90 ⊕ Z2700.
Here is a simple exercise from the section that I liked: prove that a finite

abelian group that is not cyclic contains a subgroup which is isomorphic to
Zp ⊕ Zp for some prime p.

Let G be a finite abelian group that is not cyclic. Consider its invariant
factor decomposition: G ∼=

⊕t
i=1 Zmi

. If t = 1, then G would be cyclic hence
t > 1. Since m1 | m2 and m1 > 1, m1 and m2 must share a prime factor p.
Then G[p] ∼=

⊕t
i=1 Zp. Take the subgroup corresponding to Zp ⊕ Zp ⊕

⊕t
i=3 0.

In the next post, we discuss the Krull-Schmidt theorem which extends this
notion of uniquely decomposing a group into a finite direct product of indecom-
posable subgroups to groups that satisfy both the ascending chain condition or
descending chain condition on normal subgroups.
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