Products, coproducts, and free objects in groups and abelian groups

written by Night Shift in Math on Functor Network original link: https://functor.network/user/854/entry/366

Last post we discussed products, coproducts, and free objects generally in category theory. This post we focus our attention on **Grp** and **Ab**.

Definition 1. For a family of groups $\{G_i \mid i \in I\}$, define a binary operation on the Cartesian product as follows. If $f, g \in \prod_{i \in I} G_i$, $fg : I \mapsto \bigcup_{i \in I} G_i$ is the function given by $i \mapsto f(i)g(i)$. $\prod_{i \in I} G_i$ is called the direct product of the family of groups.

Definition 2. The weak direct product of groups $\{G_i \mid i \in I\}$ denoted $\prod_{i \in I}^w G_i$ is the set of all $f \in \prod_{i \in I} G_i$ such that $f(i) = e_i$ for all but finitely many $i \in I$. If all the groups G_i are Abelian, $\prod_{i \in I}^w G_i$ is usually called the direct sum and denoted $\bigoplus_{i \in I} G_i$.

It is trivial to prove that $\prod_{i \in I} G_i$ is a product in **Grp** and **Ab**. It is also easy to see that the direct sum of Abelian groups is a coproduct in **Grp**.

These definitions are external direct products or external direct sums, but sometimes a group has the direct product or direct sum structure within itself, and we may call it an internal weak direct product or internal direct sum in that case.

Theorem 1. Let $\{N_i \mid i \in I\}$ be a family of normal subgroups of G such that

1.
$$G = \langle \bigcup_{i \in I} N_i \rangle$$

2.
$$\forall k \in I, N_k \cap \left\langle \bigcup_{i \neq k} N_i \right\rangle = \langle e \rangle$$

Then $G \cong \prod_{i \in I}^{w} N_i$.

Proof. If $(a_i)_{i\in I}\in\prod_{i\in I}^w N_i$, then $a_i=e_i$ except for finitely many $i\in I$. Let $I_0=\{i\in I\mid a_i\neq e_i\}$. $\prod_{i\in I_0}a_i$ is a well-defined element of G, since for $a\in N_i, b\in N_j, i\neq j, ab=ba$. Consequently, $\phi:\prod_{i\in I}^w N_i\to G, a\mapsto\prod_{i\in I_0}a_i$ and $e\mapsto e$ is a homomorphism such that $\phi\iota_i(a_i)=a_i$ for $a_i\in N_i$. Since G is generated by the N_i 's, every element $a\in G$ is a finite product of elements from various N_i . a can be expressed as $\prod_{i\in I_0}a_i$. Hence $\prod_{i\in I_0}\iota_i(a_i)\in\prod_{i\in I}^w N_i$ and $\phi\left(\prod_{i\in I_0}\iota_i(a_i)\right)=\prod_{i\in I_0}a_i=a$. Therefore ϕ is an epimorphism. Suppose that $\phi(a)=\prod_{i\in I_0}a_i=e\in G$. Assume for convenience that $I_0=\{1,2,\cdots,n\}$. Then $\prod_{i\in I_0}a_i=a_1a_2\cdots a_n=e$. Hence $a_1^{-1}=a_2\cdots a_n\in N_1\cap \langle\bigcup_{i=2}^n N_i\rangle=\langle e\rangle$ and therefore $a_1=e$. Repetition of this argument shows $a_i=e$ for all $i\in I$. Hence ϕ is a monomorphism.

In light of this theorem, we have the following definition:

Definition 3. Let $\{N_i \mid i \in I\}$ be a family of normal subgroups of G such that $G = \langle \bigcup_{i \in I} N_i \rangle$ and $\forall k \in I, N_k \cap \langle \bigcup_{i \neq k} N_i \rangle = \langle e \rangle$. Then G is said to be the internal weak direct product of $\{N_i \mid i \in I\}$.

We shall now construct a group F that is free on the set X. Let $X = \emptyset$, then F is the trivial group. If $X \neq \emptyset$, let X^{-1} be a set disjoint from X such that $|X| = |X^{-1}|$. Choose a bijection $X \to X^{-1}$ and denote the image of x by x^{-1} . Choose a singleton $\{1\}$ that is disjoint from $X \cup X^{-1}$. A word on X is a sequence (a_1, a_2, \cdots) with $a_i \in X \cup X^{-1} \cup \{1\}$ such that for some $n \in \mathbb{N}$, $a_k = 1$ for all $k \geq n$. The constant sequence is called the empty word and is denoted 1. A word (a_1, a_2, \cdots) on X is said to be reduced iff

- 1. $\forall x \in X$, x and x^{-1} are not adjacent
- 2. $a_k = 1$ implies $a_i = 1$ for all $i \ge k$.

Every nonempty reduced word is of the form $(x_1^{\lambda_1}, x_2^{\lambda_2}, \cdots, x_n^{\lambda_n}, 1, 1, \cdots)$ where $n \in \mathbb{N}, x_i \in X, \lambda_i \in \{-1, 1\}$. Hereafter, this word is denoted by $x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_n^{\lambda_n}$. Two reduced words $x_1^{\lambda_1} x_2^{\lambda_2} \cdots x_m^{\lambda_m}$ and $y_1^{\delta_1} y_2^{\delta_2} \cdots y_n^{\delta_n}$ are equal iff both are 1 or m=n and $x_i=y_i, \lambda_i=\delta_i$ for each $i\in\{1,2,\cdots,n\}$. Consequently the map from X into the set F(X) of all reduced words on X given by $x\mapsto x^1=x$ is injective. Identify X with its image and consider it to be a subset of F(X). Define a binary operation on the set F=F(X) of reduced words on X by juxtaposition and cancellations of adjacent terms.

Theorem 2. If X is a nonempty set, F = F(X) is the set of all reduced words on X, then F is a group and $F = \langle X \rangle$.

Proof. 1 is an identity element and $x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n}$ has inverse $x_n^{-\delta_n} \cdots x_1^{-\delta_1}$. $\forall x \in X, \delta \in \{-1, 1\}$, let $|x^{\delta}| : F \to F$ be given by $1 \mapsto x^{\delta}$ and

$$x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n} \mapsto \begin{cases} x^{\delta} x_1^{\delta_1} \cdots x_n^{\delta_n} & x^{\delta} \neq x_1^{-\delta_1} \\ x_2^{\delta_2} \cdots x_n^{\delta_n} & x^{\delta} = x_1^{-\delta_1} \end{cases}$$

Let A(F) be the group of permutations on F and F_0 the subgroup generated by $\{|x| \mid x \in X\}$. The map $\phi: F \to F_0$ given by $1 \mapsto \operatorname{id}_F, x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n} \mapsto |x_1^{\delta_1}| \cdots |x_n^{\delta_n}|$ is a surjection such that $\phi(w_1w_2) = \phi(w_1)\phi(w_2)$. Since $1 \mapsto x_1^{\delta_1} x_2^{\delta_2} x_n^{\delta_n}$ under the map $|x_1^{\delta_1}| \cdots |x_n^{\delta_n}|$, ϕ is injective. The fact that F_0 is a group implies that associativity holds in F and that ϕ is an isomorphism of groups.

Some facts about free groups: if $|X| \ge 2$, then the free group is nonabelian. Every element except 1 has infinite order. Every subgroup of a free group is itself a free group on some set.

Theorem 3. Let F be the free group on a set X then F is a free object on the set X in Grp.

Proof. Let G be a group and $f: X \to G$. Define $\bar{f}: F \to G$ to be $\bar{f}(1) = e$ and for $x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n}$ a nonempty reduced word on X,

$$\bar{f}(x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n}) = f(x_1)^{\delta_1} f(x_2)^{\delta_2} \cdots f(x_n)^{\delta_n}$$

 \bar{f} is a homomorphism such that $\bar{f} \circ \iota = f$. If $g: F \to G$ is any homomorphism such that $g \circ \iota = f$, then

$$g(x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n}) = g(x_1)^{\delta_1} g(x_2)^{\delta_2} \cdots g(x_n)^{\delta_n} = \bar{f}(x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n})$$

Thus \bar{f} is unique. \Box

Corollary 1. Every group G is the homomorphic image of a free group.

Proof. Let X be a set of generators of G and let F be the free group on the set X. The inclusion map $X \to G$ induces a homomorphism $\bar{f}: F \to G$ such that $x \mapsto x$. Since $G = \langle X \rangle$, \bar{f} is an epimorphism.

A consequence is that any group G is isomorphic to a quotient group F/N. F is the free group on X and N is the kernel of the epimorphism $F \to G$. F is determined to isomorphism by X and N is determined by any subset that generates it as a subgroup of F. If $w = x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n} \in F$ is a generator of N, then under the epimorphism $F \to G$, $w \mapsto x_1^{\delta_1} \cdots x_n^{\delta_n} = e$. The equation $x_1^{\delta_1} x_2^{\delta_2} \cdots x_n^{\delta_n} = e$ in G is called a relation on the generators x_i . A given group G may be completely described by specifying a set X of generators of G and a suitable set R of relations on these generators. This description is not unique since there are many possible choices of both X and R. Conversely, suppose we are given a set X and a set Y of reduced words on the elements of X. Let F be a free group on X and N the normal subgroup of F generated by Y (intersection of all normal subgroups of F containing Y). Let G = F/N and identify X with its image in F/N under the map $X \hookrightarrow F \twoheadrightarrow F/N$. Then G is a group generated by X and all the relations w = e are satisfied.

Definition 4. Let X be a set and Y a set of reduced words on X. A group G is said to be the group defined by the generators $x \in X$ and relations $w = e(w \in Y)$ provided $G \cong F/N$ where F is the free group on X and N is the normal subgroup of F generated by Y. One says that $(X \mid Y)$ is a presentation of G.

Theorem 4 (Van Dyck's theorem). Let X be a set, Y a set of reduced words on X and G the group defined by generators $x \in X$ and relations $w = e, w \in Y$. If H is any group such that $H = \langle X \rangle$ and H satisfies all the relations w = e, then there is an epimorphism $G \to H$.

Proof. If F is the free group on X then the inclusion map $X \to H$ induces an epimorphism $\phi: F \to H$. Since H satisfies the relations $w = e, Y \subseteq \ker \phi$. The normal subgroup N generated by Y in F is contained in $\ker \phi$. ϕ induces an epimorphism $F/N \to H/0$. Thus the composition is an epimorphism.

Finally, we define the free product, which is the coproduct in **Grp**.

Given a family of groups $\{G_i \mid i \in I\}$, let $X = \bigsqcup_{i \in I} G_i$. Let $\{1\}$ be a singleton disjoint from X. A word on X is any sequence (a_1, a_2, \cdots) such that $a_i \in X \cup \{1\}$ and for some $n \in \mathbb{N}$, $a_i = 1$ for all $i \geq n$. A word (a_1, a_2, \cdots) is reduced iff

- 1. No $a_i \in X$ is the identity element in its group G_i
- 2. $\forall i, j \geq 1, a_i$ and a_{i+1} are not in the same group G_i
- 3. $a_k = 1$ implies $a_i = 1$ for all $i \ge k$.

Let $\prod_{i\in I}^* G_i$ be the set of all reduced words on X. $\prod_{i\in I}^* G_i$ forms a group called the free product of $\{G_i \mid i\in I\}$. 1 is the identity element and the product of two words is juxtaposition with any necessary cancellations and contractions.

 $\forall k \in I, \iota_k : G_k \to \prod_{i \in I}^* G_i$ given by $e \mapsto 1, \ a \mapsto a = (a, 1, 1, \cdots)$ is a monomorphism of groups.

Theorem 5. Let $\{G_i \mid i \in I\}$ be a family of groups and $\prod_{i \in I}^* G_i$ their free product. Then $\prod_{i \in I}^* G_i$ is a coproduct in **Grp**.

Proof. Let $\psi_i: G_i \to H$ be homomorphisms. If $a_1 a_2 \cdots a_n$ is a reduced word in $\prod_{i \in I}^* G_i$ with $a_k \in G_{i_k}$, define

$$\psi(a_1 a_2 \cdots a_n) = \psi_{i_1}(a_1) \psi_{i_2}(a_2) \cdots \psi_{i_n}(a_n) \in H$$

Finally, we discuss free abelian groups, the free objects in **Ab**.

Definition 5. Let X be a nonempty subset of abelian group F. X is a basis of F iff

- 1. $F = \langle X \rangle$
- 2. For distinct $x_1, x_2, \dots, x_k \in X$, $n_i \in \mathbb{Z}$, $n_1 x_1 + n_2 x_2 + \dots + n_k x_k = 0$ implies $n_i = 0$ for every i.

Theorem 6. The following conditions on an abelian group F are equivalent:

- 1. F has a nonempty basis
- 2. F is the internal direct sum of a family of infinite cyclic subgroups
- 3. F is isomorphic to a direct sum of \mathbb{Z} .
- 4. F is a free object on a nonempty set in Ab.

The proof is straightforward but tedious.

Theorem 7. Any two bases of a free abelian group F have the same cardinality.

Proof. Suppose F has a basis X of finite cardinality n such that $F \cong \bigoplus_{i=1}^n \mathbb{Z}$. The restriction of the isomorphism to 2F is an isomorphism $2F \cong \bigoplus_{i=1}^n 2\mathbb{Z}$, whence $F/2F \cong \bigoplus_{i=1}^n \mathbb{Z}/2\mathbb{Z}$. Thus $|F/2F| = 2^n$. If Y is another basis of F and $|Y| = r \in \mathbb{N}$, then by a similar argument, $|F/2F| = 2^r$, whence r = n and |X| = |Y|. Note that if Y was an infinite set, there would be a contradiction so Y had to be a finite set. Thus if one basis of F is infinite, then all bases are infinite. It suffices to show |X| = |F| if X is any infinite basis of F. Clearly $|X| \leq |F|$. Let $S = \bigcup_{n \in \mathbb{N}} X^n$. For each $s = (x_1, x_2, \cdots, x_n) \in S$ let $G_s = \langle x_1, \cdots, x_n \rangle$. $G_s \cong \mathbb{Z} y_1 \oplus \cdots \mathbb{Z} y_t$ where y_1, \cdots, y_t are the distinct elements in $\{x_1, x_2, \cdots, x_n\}$. Therefore $|G_s| = |\mathbb{Z}^t| = \aleph_0$. Since $F = \bigcup_{s \in S} G_s, |F| = |\bigcup_{s \in S} G_s| \leq |S|\aleph_0$. |S| = |X|, whence $|F| \leq |X|\aleph_0 = |X|$. Thus |F| = |X| by Schroeder-Bernstein theorem.

Theorem 8. Every abelian group G is the homomorphic image of a free abelian group of rank |X| where X is a set of generators of G.

Proof. Let F be the free abelian group on the set X. Then $F = \bigoplus_{x \in X} \mathbb{Z}x$ and rank F = |X|. The inclusion map $X \to G$ induces a homomorphism $\bar{f} : F \to G$ such that $1x \mapsto x$ whence $X \subseteq \text{im } \bar{f}$. Since X generates G, we must have $\text{im } \bar{f} = G$.

In the next post, we discuss finitely generated abelian groups and their structures.