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Last post we discussed products, coproducts, and free objects generally in
category theory. This post we focus our attention on Grp and Ab.

Definition 1. For a family of groups {Gi | i ∈ I}, define a binary operation
on the Cartesian product as follows. If f, g ∈

∏
i∈I Gi, fg : I 7→

⋃
i∈I Gi is the

function given by i 7→ f(i)g(i).
∏

i∈I Gi is called the direct product of the family
of groups.

Definition 2. The weak direct product of groups {Gi | i ∈ I} denoted
∏w

i∈I Gi

is the set of all f ∈
∏

i∈I Gi such that f(i) = ei for all but finitely many i ∈ I.
If all the groups Gi are Abelian,

∏w
i∈I Gi is usually called the direct sum and

denoted
⊕

i∈I Gi.

It is trivial to prove that
∏

i∈I Gi is a product in Grp and Ab. It is also easy
to see that the direct sum of Abelian groups is a coproduct in Grp.

These definitions are external direct products or external direct sums, but
sometimes a group has the direct product or direct sum structure within itself,
and we may call it an internal weak direct product or internal direct sum in that
case.

Theorem 1. Let {Ni | i ∈ I} be a family of normal subgroups of G such that

1. G =
〈⋃

i∈I Ni

〉
2. ∀k ∈ I,Nk ∩

〈⋃
i ̸=k Ni

〉
= ⟨e⟩

Then G ∼=
∏w

i∈I Ni.

Proof. If (ai)i∈I ∈
∏w

i∈I Ni, then ai = ei except for finitely many i ∈ I. Let
I0 = {i ∈ I | ai ̸= ei}.

∏
i∈I0

ai is a well-defined element of G, since for
a ∈ Ni, b ∈ Nj , i ̸= j, ab = ba. Consequently, ϕ :

∏w
i∈I Ni → G, a 7→

∏
i∈I0

ai

and e 7→ e is a homomorphism such that ϕιi(ai) = ai for ai ∈ Ni. Since G is
generated by the Ni’s, every element a ∈ G is a finite product of elements from
various Ni. a can be expressed as

∏
i∈I0

ai. Hence
∏

i∈I0
ιi(ai) ∈

∏w
i∈I Ni and

ϕ
(∏

i∈I0
ιi(ai)

)
=

∏
i∈I0

ai = a. Therefore ϕ is an epimorphism. Suppose that
ϕ(a) =

∏
i∈I0

ai = e ∈ G. Assume for convenience that I0 = {1, 2, · · · , n}. Then∏
i∈I0

ai = a1a2 · · · an = e. Hence a−1
1 = a2 · · · an ∈ N1 ∩ ⟨

⋃n
i=2 Ni⟩ = ⟨e⟩ and

therefore a1 = e. Repetition of this argument shows ai = e for all i ∈ I. Hence
ϕ is a monomorphism.
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In light of this theorem, we have the following definition:

Definition 3. Let {Ni | i ∈ I} be a family of normal subgroups of G such that
G =

〈⋃
i∈I Ni

〉
and ∀k ∈ I,Nk ∩

〈⋃
i̸=k Ni

〉
= ⟨e⟩. Then G is said to be the

internal weak direct product of {Ni | i ∈ I}.

We shall now construct a group F that is free on the set X. Let X = ∅, then
F is the trivial group. If X ̸= ∅, let X−1 be a set disjoint from X such that
|X| = |X−1|. Choose a bijection X → X−1 and denote the image of x by x−1.
Choose a singleton {1} that is disjoint from X∪X−1. A word on X is a sequence
(a1, a2, · · · ) with ai ∈ X ∪X−1 ∪ {1} such that for some n ∈ N, ak = 1 for all
k ≥ n. The constant sequence is called the empty word and is denoted 1. A
word (a1, a2, · · · ) on X is said to be reduced iff

1. ∀x ∈ X, x and x−1 are not adjacent

2. ak = 1 implies ai = 1 for all i ≥ k.

Every nonempty reduced word is of the form (xλ1
1 , xλ2

2 , · · · , xλn
n , 1, 1, · · · ) where

n ∈ N, xi ∈ X, λi ∈ {−1, 1}. Hereafter, this word is denoted by xλ1
1 xλ2

2 · · ·xλn
n .

Two reduced words xλ1
1 xλ2

2 · · ·xλm
m and yδ1

1 y
δ2
2 · · · yδn

n are equal iff both are 1 or
m = n and xi = yi, λi = δi for each i ∈ {1, 2, · · · , n}. Consequently the map
from X into the set F (X) of all reduced words on X given by x 7→ x1 = x is
injective. Identify X with its image and consider it to be a subset of F (X).
Define a binary operation on the set F = F (X) of reduced words on X by
juxtaposition and cancellations of adjacent terms.

Theorem 2. If X is a nonempty set, F = F (X) is the set of all reduced words
on X, then F is a group and F = ⟨X⟩.

Proof. 1 is an identity element and xδ1
1 x

δ2
2 · · ·xδn

n has inverse x−δn
n · · ·x−δ1

1 . ∀x ∈
X, δ ∈ {−1, 1}, let |xδ| : F → F be given by 1 7→ xδ and

xδ1
1 x

δ2
2 · · ·xδn

n 7→

{
xδxδ1

1 · · ·xδn
n xδ ̸= x−δ1

1
xδ2

2 · · ·xδn
n xδ = x−δ1

1

Let A(F ) be the group of permutations on F and F0 the subgroup generated
by {|x| | x ∈ X}. The map ϕ : F → F0 given by 1 7→ idF , xδ1

1 x
δ2
2 · · ·xδn

n 7→
|xδ1

1 | · · · |xδn
n | is a surjection such that ϕ(w1w2) = ϕ(w1)ϕ(w2). Since 1 7→

xδ1
1 x

δ2
2 x

δn
n under the map |xδ1

1 | · · · |xδn
n |, ϕ is injective. The fact that F0 is a

group implies that associativity holds in F and that ϕ is an isomorphism of
groups.

Some facts about free groups: if |X| ≥ 2, then the free group is nonabelian.
Every element except 1 has infinite order. Every subgroup of a free group is
itself a free group on some set.

Theorem 3. Let F be the free group on a set X then F is a free object on the
set X in Grp.
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Proof. Let G be a group and f : X → G. Define f̄ : F → G to be f̄(1) = e and
for xδ1

1 x
δ2
2 · · ·xδn

n a nonempty reduced word on X,

f̄(xδ1
1 x

δ2
2 · · ·xδn

n ) = f(x1)δ1f(x2)δ2 · · · f(xn)δn

f̄ is a homomorphism such that f̄ ◦ ι = f . If g : F → G is any homomorphism
such that g ◦ ι = f , then

g(xδ1
1 x

δ2
2 · · ·xδn

n ) = g(x1)δ1g(x2)δ2 · · · g(xn)δn = f̄(xδ1
1 x

δ2
2 · · ·xδn

n )

Thus f̄ is unique.

Corollary 1. Every group G is the homomorphic image of a free group.

Proof. Let X be a set of generators of G and let F be the free group on the set
X. The inclusion map X → G induces a homomorphism f̄ : F → G such that
x 7→ x. Since G = ⟨X⟩, f̄ is an epimorphism.

A consequence is that any group G is isomorphic to a quotient group F/N . F
is the free group on X and N is the kernel of the epimorphism F → G. F
is determined to isomorphism by X and N is determined by any subset that
generates it as a subgroup of F . If w = xδ1

1 x
δ2
2 · · ·xδn

n ∈ F is a generator of
N , then under the epimorphism F → G, w 7→ xδ1

1 · · ·xδn
n = e. The equation

xδ1
1 x

δ2
2 · · ·xδn

n = e in G is called a relation on the generators xi. A given group
G may be completely described by specifying a set X of generators of G and a
suitable set R of relations on these generators. This description is not unique
since there are many possible choices of both X and R. Conversely, suppose we
are given a set X and a set Y of reduced words on the elements of X. Let F be
a free group on X and N the normal subgroup of F generated by Y (intersection
of all normal subgroups of F containing Y ). Let G = F/N and identify X with
its image in F/N under the map X ↪→ F ↠ F/N . Then G is a group generated
by X and all the relations w = e are satisfied.

Definition 4. Let X be a set and Y a set of reduced words on X. A group G is
said to be the group defined by the generators x ∈ X and relations w = e(w ∈ Y )
provided G ∼= F/N where F is the free group on X and N is the normal subgroup
of F generated by Y . One says that (X | Y ) is a presentation of G.

Theorem 4 (Van Dyck’s theorem). Let X be a set, Y a set of reduced words on
X and G the group defined by generators x ∈ X and relations w = e, w ∈ Y . If
H is any group such that H = ⟨X⟩ and H satisfies all the relations w = e, then
there is an epimorphism G → H.

Proof. If F is the free group on X then the inclusion map X → H induces an
epimorphism ϕ : F → H. Since H satisfies the relations w = e, Y ⊆ kerϕ. The
normal subgroup N generated by Y in F is contained in kerϕ. ϕ induces an
epimorphism F/N → H/0. Thus the composition is an epimorphism.
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Finally, we define the free product, which is the coproduct in Grp.

Given a family of groups {Gi | i ∈ I}, let X =
⊔

i∈I Gi. Let {1} be a singleton
disjoint from X. A word on X is any sequence (a1, a2, · · · ) such that ai ∈ X∪{1}
and for some n ∈ N, ai = 1 for all i ≥ n. A word (a1, a2, · · · ) is reduced iff

1. No ai ∈ X is the identity element in its group Gi

2. ∀i, j ≥ 1, ai and ai+1 are not in the same group Gj

3. ak = 1 implies ai = 1 for all i ≥ k.

Let
∏∗

i∈I Gi be the set of all reduced words on X.
∏∗

i∈I Gi forms a group called
the free product of {Gi | i ∈ I}. 1 is the identity element and the product of
two words is juxtaposition with any necessary cancellations and contractions.

∀k ∈ I, ιk : Gk →
∏∗

i∈I Gi given by e 7→ 1, a 7→ a = (a, 1, 1, · · · ) is a monomor-
phism of groups.

Theorem 5. Let {Gi | i ∈ I} be a family of groups and
∏∗

i∈I Gi their free
product. Then

∏∗
i∈I Gi is a coproduct in Grp.

Proof. Let ψi : Gi → H be homomorphisms. If a1a2 · · · an is a reduced word in∏∗
i∈I Gi with ak ∈ Gik

, define

ψ(a1a2 · · · an) = ψi1(a1)ψi2(a2) · · ·ψin
(an) ∈ H

Finally, we discuss free abelian groups, the free objects in Ab.

Definition 5. Let X be a nonempty subset of abelian group F . X is a basis of
F iff

1. F = ⟨X⟩

2. For distinct x1, x2, · · · , xk ∈ X, ni ∈ Z, n1x1 +n2x2 + · · ·nkxk = 0 implies
ni = 0 for every i.

Theorem 6. The following conditions on an abelian group F are equivalent:

1. F has a nonempty basis

2. F is the internal direct sum of a family of infinite cyclic subgroups

3. F is isomorphic to a direct sum of Z.

4. F is a free object on a nonempty set in Ab.

The proof is straightforward but tedious.

Theorem 7. Any two bases of a free abelian group F have the same cardinality.
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Proof. Suppose F has a basis X of finite cardinality n such that F ∼=
⊕n

i=1 Z.
The restriction of the isomorphism to 2F is an isomorphism 2F ∼=

⊕n
i=1 2Z,

whence F/2F ∼=
⊕n

i=1 Z/2Z. Thus |F/2F | = 2n. If Y is another basis of F
and |Y | = r ∈ N, then by a similar argument, |F/2F | = 2r, whence r = n and
|X| = |Y |. Note that if Y was an infinite set, there would be a contradiction so Y
had to be a finite set. Thus if one basis of F is infinite, then all bases are infinite.
It suffices to show |X| = |F | if X is any infinite basis of F . Clearly |X| ≤ |F |.
Let S =

⋃
n∈NX

n. For each s = (x1, x2, · · · , xn) ∈ S let Gs = ⟨x1, · · · , xn⟩.
Gs

∼= Zy1 ⊕· · ·Zyt where y1, · · · , yt are the distinct elements in {x1, x2, · · · , xn}.
Therefore |Gs| = |Zt| = ℵ0. Since F =

⋃
s∈S Gs, |F | =

∣∣⋃
s∈S Gs

∣∣ ≤ |S|ℵ0.
|S| = |X|, whence |F | ≤ |X|ℵ0 = |X|. Thus |F | = |X| by Schroeder-Bernstein
theorem.

Theorem 8. Every abelian group G is the homomorphic image of a free abelian
group of rank |X| where X is a set of generators of G.

Proof. Let F be the free abelian group on the set X. Then F =
⊕

x∈X Zx and
rankF = |X|. The inclusion map X → G induces a homomorphism f̄ : F → G
such that 1x 7→ x whence X ⊆ im f̄ . Since X generates G, we must have
im f̄ = G.

In the next post, we discuss finitely generated abelian groups and their structures.
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