Stillwell, Elements of Number Theory, Chapter 1 Exercises

written by Dr. Heraklinos on Functor Network original link: https://functor.network/user/842/entry/322

Problem 1.1.1 Check that the quadratic function $n^2 + n + 41$ is prime for all small values of n (say, for n up to 30).

Solution. Using the matlab package in R, we check whether the quantity n^2+n+41 is prime for each positive natural number less than or equal to 41. We find that, for each n less than or equal to 40, this quantity lacks a proper divisor

	\overline{n}	$n^2 + n + 41$	Prime or Composite
	1	43	Prime
	2	47	Prime
	3	53	Prime
	4	61	Prime
	5	71	Prime
	6	83	Prime
	7	97	Prime
	8	113	Prime
	9	131	Prime
	10	151	Prime
	11	173	Prime
	12	197	Prime
	13	223	Prime
	14	251	Prime
	15	281	Prime
	16	313	Prime
	17	347	Prime
	18	383	Prime
	19	421	Prime
other than 1 and is hence prime.	20	461	Prime
	21	503	Prime
	22	547	Prime
	23	593	Prime
	24	641	Prime
	25	691	Prime
	26	743	Prime
	27	797	Prime
	28	853	Prime
	29	911	Prime
	30	971	Prime
	31	1,033	Prime
	32	1,097	Prime
	33	1,163	Prime
	34	1,231	Prime
	35	1,301	Prime
	36	1,373	Prime
	37	1,447	Prime
	38	1,523	Prime
	39	1,601	Prime
	40	1,681	Composite
	41	1,763	Composite

Problem 1.2. Show nevertheless that $n^2 + n + 41$ is not prime for certain values of n.

Solution. Let n = 41. Then

$$41^2 + 41 + 41 = 41(41 + 1 + 1) = 41 \cdot 43,$$

meaning that n^2+n+41 has two non-trivial proper divisor and is therefore composite.

Problem 1.3. What is the smallest such value?

Solution. Using the matlab package in R and the table we generated in Problem 1.1.1, we find that n^2+n+41 is prime provided that $n\leq 39$. But when n=40, we have $40^2+40+41=1681$, which is composite. In particular, it has a proper divisor of 41 as $1681=41^2$. So n=40 is the smallest such value of n for which n^2+n+41 is not prime.