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Problem 1.1. Let S be a set. Prove that the law of composition defined by ab = a for all @ and b in S
is associative. For which sets does this law have an identity?

Solution. Given a,b,c € S, one has
(ab)e = ac = a = ab = a(bc),

so this law of composition on S is associative. Next, I claim that this law has an identity element if and
only if S is a singleton set. Indeed, if S = {s}, then ss = s, so s is the identity element. Conversely,
suppose S contain an identity element e. Then, for any a € S, one has ae = a = ea. But the law of
composition implies that ea = e, hence a = e and S = {e}.

Problem 1.3. Let N denote the set {1,2,3} of natural numbers, and let s : N — N be the shift
map defined by s(n) = n + 1. Prove that s has no right inverse, but that it has infinitely many left
inverses.

Solution. Suppose, for the sake of contradiction, that there exists a right inverse g : N — N for s. Then
(sog)(n) =n for every n € N. In particular, one has (s o g)(1) = 1, from which it follows that

1= (s0g)(1) =s(9(1)) =g(1) + 1,
in which case g(1) = 0 € N, which is a contradiction. So no such right inverse g exists.

Now, fix m € N, and define f,, : N — N by

; (n):{m—l ifn#£1,

m otherwise.
Then, for any n € N, one has

(fm o 5)(”) = fm(S(’fl)) = f’rn(n_" 1) = (TL + 1) —1l=mn,

80 fm, is a left inverse of s. As m can be chosen arbitrarily from N, we have in fact defined a countable
family of left inverses.

Problem 2.1. Make a multiplication table for the symmetric group S3.

Solution. The standard presentation for the symmetric group Ss, given in (2.2.7) in Artin, is
Ss = (z,y|a® =1=9% yx=2’y) = {1,2,2°,y, 2y, 2%y},

where x = (123) and y = (12). Using these defining relations, we compute the multiplication table for
Ss.
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Problem 4.3. Let a and b be elements of a group G. Prove that ab and ba have the same order.
Solution. We begin with a lemma.

Lemma. For any n € N,
(ab)™ = a(ba)"'b.



Proof. We proceed by induction on n. When n = 1, we find that (ab)' = ab = aeb = a(ba)'~'b. Suppose
inductively that (ab)* = a(ba)*~1b for some fixed k > 1. It then follows that

(ab)**1 = (ab)*(ab) = (a(ba)*~1b)(ab) = a((ba)*~'(ba))b = a(ba)"b,
which closes the induction. W

Now, for any n € N, we have (ab)® = e if and only if a(ba)"~'b = e, which is true if and only if
(ba)"1 = a=1b~! = (ba)~!, which is true if and only if (ba)™ = e. So ab has finite order if and only if ba
has finite order, hence ab has infinite order if and only if ba has infinite order. Furthermore, if ab and ba
have finite order, then the forward direction implies that the order of ab divides the order of ba and the
backward direction that the order of ba divides the order of ab. As |ab| and |ba| are positive, we then
conclude that |ab| = |bal.

Problem 5.1. Let ¢ : G — G’ be a surjective homomorphim. Prove that if G is cyclic, then G’ is cyclic,
and if G is abelian, then G’ is abelian.

Solution. Suppose that G is cyclic. So there exists a € G such that G = (a). Fix y’ € G'. As ¢ is
surjective, there exists ' € G such that p(x') =y'. As G is cyclic, there exists m € Z such that z’ = a™.
Then

y' =p(@') =p(a™) = e(a)™,
so ¥’ € (p(a)), hence (p(a)) O G'. As (p(a)) C G’ by definition, we conclude that {¢(a)) = G’, so G’ is
cyclic.

Next, let z/,y" € G. By surjectivity of ¢, there exist z,y € G such that p(z) = 2’ and p(y) = y'. As G is
abelian, we find that

2"y = p()e(y) = p(zy) = e(yz) = p(y)e(z) = y'a,
so G’ is abelian, as required.

Problem 5.2. Prove that the intersection of K N H of subgroups of a group G is a subgroup of H, and
that if K is a normal subgroup of G, then K N H is a normal subgroup of H.

Proof. We have K N H C G by definition K, H C G. Let x,y € KN H. Then z,y € K and z,y € H. As
K and H are closed under composition, we have zy € K and zy € H,so xy € KN H. As K and H are
subgroups, they contain the identity element of G, so e € K N H. Finally, given z € K N H C G, there
exists an inverse 2~ € G. As K and H are closed under inversion, we have 2~ ! € K and z~! € H, so
x~ '€ KNH. So KN H is a subgroup of G.

Suppose now that K is a normal subgroup of G. Let a € K N H and b€ H. Thena € H, b€ H, and
b~! € H, so bab~! € H. Furthermore, one has a € K, so because K is a normal subgroup of G > b, we
have bab~! € K. So bab~! € K N H, so K N H is a normal subgroup of H.
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1} . Is the map RT — G’ that sends

Problem 6.1. Let G’ be the group of real matrices of the form [1

2 to this matrix an isomorphism?

Solution. Define ¢ : RT — G’ by ¢(z) } . I claim that ¢ is an isomorphism. First, if ¢(x) = p(y)

|1 =z
o1
for z,y € R, then [(1) ﬂ = [(1) %1/] . Equating entries then yields = = y, so ¢ is injective. Second, given

0 1
is a homomorphism. For any g, h € R, we find that

plg+h) = B gJ{h] = E) ﬂ [é ﬂ = ¢(g)p(h),

50 ¢ is a homomorphism and hence an isomorphism, hence R™ 2 G/, as required.

[1 a] € G', we have p(a) = (1) ﬂ , 80 ( is surjective and hence bijective. Finally, we will show that ¢

Problem 6.4. Prove that in a group, the products ab and ba are conjugate elements.



Solution. Let a,b € G. We have

ab = e(ab) = (b”'b) (ab) = b~ ' (ba)b,

where b = (b’l)fl , so ab and ba are conjugate elements.



