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Problem 1.1. If r is rational (r ̸= 0) and x is irrational, prove that r + x
and rx are irrational.

Solution. For the sake of contradiction, suppose that r+x ∈ Q. Then, as Q
is a field, we have −r ∈ Q by (A5) and hence −r+(r+x) ∈ Q by (M1). But then
−r + (r + x) = x ∈ Q, contradicting the fact that x is irrational. Analogously,
suppose that rx ∈ Q. As r ̸= 0, there exists a multiplicative inverse 1

r ∈ Q.
So 1

r · (rx) ∈ Q by (M1), but 1
r · (rx) = x, so x ∈ Q. This is, once more, a

contradiction, so we conclude that both r+x and rx are irrational, as required.
Problem 1.2. Prove that there is no rational number whose square is 12.
Solution. Suppose, for the sake of contradiction, that there exists x ∈ Q

satisfying x2 = 12. Then write x = m
n for m,n ∈ Z and n ̸= 0. Dividing the

numerator and denominator by gcd(m,n) if necessary, we can assume that m
and n are relatively prime. Then

x2 =
(m
n

)2

=
m2

n2
= 12

and hence m2 = 12n2 = 3(4n2). So 3 divides m2. As 3 is prime, Euclid’s lemma
then implies that 3 divides m. So m = 3k for some k ∈ Z. So we find that

(3k)2 = 9k2 = 12n2,

and hence 3k2 = 4n2. So 3 divides 4n2. But then, as 3 does not divide 4, we
must have that 3 divides n2 and hence 3 divides n by Euclid’s lemma. But
then m and n share a common factor of 3, contradicting the fact that they were
chosen to be relatively prime.

Problem 1.3. Prove Proposition 1.15.
Solution. (a) Let x, y, z ∈ F with x ̸= 0, and suppose that xy = xz. By
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(M5), there exists a multiplicative inverse 1
x ∈ F of x. We then find that

y = 1y (M4)

=

(
x · 1

x

)
y (M5)

=

(
1

x
· x

)
y (M2)

=
1

x
(xy) (M3)

=
1

x
(xz) assumption that xy = xz

=

(
1

x
· x

)
z (M3)

=

(
x · 1

x

)
z (M2)

= 1z (M5)

= z. (M4)

(b) Applying part (a) with z = 1 gives the result.
(c) Applying part (a) with z = 1

x gives the result.
(d) We apply part (c), replacing x with 1

x (which is likewise non-zero) and
y with x. We then find that x = 1/(1/x).

Problem 1.4. Let E be a nonempty subset of an ordered set; suppose α is
a lower bound of E and β is an upper bound of E. Prove that α ≤ β.

Solution. As E is nonempty, we may choose p ∈ E. Then p ≥ α since α is a
lower bound of E, and p ≤ β since β is an upper bound of E. This reduces to
four cases. If p = α and p = β, then α = β. If p > α and p < β, then α < β by
the ordered-field axioms. If p = α and p < β, then substituting yields α < β.
Finally, if p = β and p > α, then substituting yields β > α. So we conclude
that α ≤ β, as required.

Problem 1.8. Prove that no order can be defined in the complex field that
turns it into an ordered field. Hint : −1 is a square.

Solution. Suppose, seeking a contradiction, that there exists an order < on
C that turns it into an ordered field. Then i ̸= 0, so by Proposition 1.18(d), we
have i2 > 0. As i2 = −1 by Proposition 2.28, we have −1 > 0. The ordered-field
axioms then imply that 1 + (−1) > 1 + 0 and hence 0 > 1. This contradicts
the trichotomy of order, as 1 is a square and hence strictly greater than 0 by
Proposition 1.18(d).

Problem 1.12. If z1, . . . , zn are complex, prove that

|z1 + z2 + . . .+ zn| ≤ |z1|+ |z2|+ . . .+ |zn|.

Solution. We proceed by induction on n. When n = 1, the statement reduces
to |z1| ≤ |z1|. The n = 2 case is given by Theorem 1.33(e). Suppose inductively
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that we have ∣∣∣∣∣
k∑

i=1

zi

∣∣∣∣∣ ≤
k∑

i=1

|zi|

for a fixed k ≥ 1. It then follows that∣∣∣∣∣
k+1∑
i=1

zi

∣∣∣∣∣ =
∣∣∣∣∣

k∑
i=1

zi + zk+1

∣∣∣∣∣
≤

∣∣∣∣∣
k∑

i=1

zi

∣∣∣∣∣+ |zk+1|

≤
k∑

i=1

|zi|+ |zk+1|

=

k+1∑
i=1

|zi|,

which closes the induction.
Problem 1.13. If x, y are complex, prove that

||x| − |y|| ≤ |x− y|.

Solution. Let x, y ∈ C. By the triangle inequality (Theorem 1.33(e)), we find
that

|x| = |(x− y) + y| ≤ |x− y|+ |y|,

hence
|x| − |y| ≤ |x− y|.

Analogously, one has

|y| = |(y − x) + x| ≤ |y − x|+ |x| = |x− y|+ |x|,

hence
|y| − |x| = −(|x| − |y|) ≤ |x− y|,

from which it follows that

−|x− y| ≤ |x| − |y|.

We therefore find that

−|x− y| ≤ |x| − |y| ≤ |x− y|,

so it follows that
||x| − |y|| ≤ |x− y|,

as required.
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Problem 1.17. Prove that

|x+ y|2 + |x− y|2 = 2|x|2 + 2|x|2

if x ∈ Rk and y ∈ Rk. Interpret this geometrically, as a statement of parallelo-
grams.

Solution. Given x,y ∈ Rk, we obtain

|x+ y|2 + |x− y|2 = (x+ y) · (x+ y) + (x− y) · (x− y)

= x · (x+ y) + y · (x+ y) + x · (x− y) + (−y) · (x− y)

= x · x+ x · y + y · x+ y · y + x · x+ x · (−y) + (−y) · x+ (−y) · (−y)

= (x · x+ x · x) + (y · y + y · y) + (x · y + y · x+ x · (−y) + (−y) · x)
= 2|x|2 + 2|y|2 + 2x · y − 2x · y
= 2|x|2 + 2|y|2.

Geometrically, this is a statement about the k-parallelogram in Rk spanned by
x and y. This parallelogram has diagonals |x + y| and |x − y|, two sides of
length |x|, and two sides of length |y|. This statement asserts that the sum of
the squared lengths of the diagonals is equal to the sum of the squared lengths
of the four sides of the parallelogram.

Problem 1.18. If k ≥ 2 and x ∈ Rk, prove that there exists y ∈ Rk such
that y ̸= 0 but x · y = 0. Is this also true if k = 1?

Solution. If x = 0 ∈ Rk, then for any non-zero y ∈ Rk, one has x · y = 0.
Suppose that x = (x1, . . . , xk) ̸= 0. Then there exists i such that xi ̸= 0. As
dot products are invariant under permutation of indices, we can assume that
x1 ̸= 0. Now define y = (−x2, x1, 0, . . . , 0). Then y ̸= 0, but

x · y =

k∑
i=1

xiyi = −x1x2 + x1x1 + 0 = 0.

The result is no longer true if k = 1. Indeed, in R1, the dot product coincides
exactly with multiplication of real scalars. But R is a field and hence lacks zero
divisors, so xy = 0 if and only if x = 0 or y = 0. If x = 0, then again any y will
suffice. If x ̸= 0, then xy = 0 only if y = 0.
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