Asymptotic Notation and Running Time

Hoa ViiTrong -+ 21 Jan 2026

Introduction

Algorithms are the backbone of computer science, but the study of algorithms
predates computers (e.g., Euclid algorithm). An algorithm is a set of
unambiguous instructions to solve a particular problem. In computer science,
analysis of algorithms consists of the following:

* Mathematically prove that the described algorithm is correct.

* Analyzing its efficiency, primarily in terms of running time and memory
usage (other factors and computational models are also studied in
algorithm research).

We use algorithms every day to efficiently sort large databases, schedule tasks,
find the shortest path between two locations, routing traffic, etc.

Running time

The running time is measured based on the number of basic machine instructions
such as memory access and pairwise arithmetic operations. Consider the
following line of code

A[i] = A[i] + 1

We have memory access operations (accessing (A[i])) and a pairwise arithmetic
operation.

This is too tedious if we want to count exactly (which might not be possible due
to different computer architectures). Nonetheless, it is often acceptable to
estimate the number of instructions up to a constant factor.

Let us look at the following example that sorts an array (A[1 ...n]) of integers
in increasing order. The algorithm is called selection sort. The idea is simple,
scan through (A[1 ... n]) to find the smallest element and put it in (A[1]), then
scan through (A[2 ... n]) to find the smallest element and put it in (A[2]), and so
on.


https://functor.network/user/840/entry/1619
https://functor.network/user/840/entry/1619
https://functor.network/user/840/entry/1619
https://functor.network/user/840

function selection_sort!(A)

n = length(A) # 1n 1
for j in 1:n-1 # 1n 2
min_idx = j # 1n 3
for k in j+1:n # 1n 4
if A[K] < A[min_idx] # 1In 5
min_idx = Kk # 1n 6
end
end
A[j], A[min_idx] = A[min_idx], A[]J] # 1In 7
end
return A # 1n 8
end

We observe that - Lines 1, 2, and 3 are executed (n-1) times. - Lines 3, 4, and 5
are executed at most (n-1 + n-2 + n-3 + ... + 1) times respectively. - Line 8 is
executed once.

Recall that 1 +2 4 ...+ n = n(n + 1)/2. The total running time is
approximately

n—1
1
T(n) :n—i—Zj :n—'—@ :O(TLQ)‘
7j=1
We will get to the O(n?) part later, but essentially, the notation says that the
running time (number of instructions) grows quadratically in terms of the size of

the input.

Exercise: What is the running time of the following dummy algorithm?

# A dummy algorithm
function dummy(n)

for j = 1:n
X =0
for k = 1:(27j)
y = 1
end
end
end

Hint: Use the formula for geometric series

atar+ar’+--+ar" ! =a




Asymptotic notation

We often want to measure the growth of the running time as n increases. For
example, when T'(n) = n?/2 + n/2 — 1, the term n? dictates the growth in
terms of n. We often use asymptotic notation to denote the running time to
make our life easier. We use the notation f(n) = O(g(n)) to say that the growth
of f(n) is no more than the growth of g(n).

Definition.

We say f(n) = O(g(n)) if there exist constants ¢ and nq such that

f(n) <cg(n) for all n > ny.

Example. Let f(n) = 3n? + 5n + 2 and g(n) = n?.
We claim that f(n) = O(g(n)).

Choose ¢ = 4 and ng = 10. Forall n > 6,
3n? +5n + 2 < 4n?.
One can visualize this by plotting

Growth Comparison (0 = n < 50)

400 1 —— f(n)=3n"2+5n+2
—— g(n) =4n"2

350 A
300 A

250

200

Value

150 A

100 A

50 A

image description
Therefore, there exist constants ¢ and ny such that

f(n) < &g(n) for all n >

[

6_,
~—
no



and hence f(n) = O(n?).

Here is another way to show f(n) = O(g(n)). Suppose

where d is some constant, then f(n) = O(g(n)).

Example.
Let f(n) = 3n? 4+ 5n + 2 and g(n) = n%. Then
2
lim @: lim (3+§—|——) =3 < .
n—00 g(n) n—00 n TL2

Therefore, f(n) = O(n?).

Example.
Let f(n) =n+ 10Inn and g(n) = n. Then

fm 7 (1+ mm”).

Using the fact that Inn/n — 0 as n — oo, we get

im m:
nl_}Oo o(n) 1 < o0.

Hence, n + 101lnn = O(n).

If you wonder how we get Inn/n — 0 as n — oo, recall from calculus that
logarithmic functions grow more slowly than any positive power of n. In
particular, we can use L’Hospital’s rule:

i BP_ g, (Wdn)nn) o
n—oo N n—oo (d/dn)(n) n—oo 1

Thus, Inn grows strictly slower than n, and hence Inn/n — 0 as n — oco.

Definition.
We say f(n) = Q(g(n)) if there exist constants ¢ and n, such that

f(n) <cg(n) forall n > ny.

Alternatively, this means g(n) = O(f(n)).



	Asymptotic Notation and Running Time
	Introduction
	Running time
	Asymptotic notation


