
Asymptotic Notation and Running Time

Hòa Vũ Trọng 21 Jan 2026

Introduction
Algorithms are the backbone of computer science, but the study of algorithms

predates computers (e.g., Euclid algorithm). An algorithm is a set of

unambiguous instructions to solve a particular problem. In computer science,

analysis of algorithms consists of the following:

Mathematically prove that the described algorithm is correct.

Analyzing its efficiency, primarily in terms of running time and memory

usage (other factors and computational models are also studied in

algorithm research).

We use algorithms every day to efficiently sort large databases, schedule tasks,

find the shortest path between two locations, routing traffic, etc.

Running time
The running time is measured based on the number of basic machine instructions

such as memory access and pairwise arithmetic operations. Consider the

following line of code

We have memory access operations (accessing (A[i])) and a pairwise arithmetic

operation.  

This is too tedious if we want to count exactly (which might not be possible due

to different computer architectures). Nonetheless, it is often acceptable to

estimate the number of instructions up to a constant factor. 

Let us look at the following example that sorts an array (A[1 n]) of integers

in increasing order. The algorithm is called selection sort. The idea is simple,

scan through (A[1 n]) to find the smallest element and put it in (A[1]), then

scan through (A[2 n]) to find the smallest element and put it in (A[2]), and so

on.

• 

• 

A[i] = A[i] + 1

https://functor.network/user/840/entry/1619
https://functor.network/user/840/entry/1619
https://functor.network/user/840/entry/1619
https://functor.network/user/840


We observe that - Lines 1, 2, and 3 are executed (n-1) times. - Lines 3, 4, and 5

are executed at most (n-1 + n-2 + n-3 + + 1) times respectively. - Line 8 is

executed once.

Recall that . The total running time is

approximately 

We will get to the  part later, but essentially, the notation says that the

running time (number of instructions) grows quadratically in terms of the size of

the input.

Exercise: What is the running time of the following dummy algorithm?

Hint: Use the formula for geometric series 

function selection_sort!(A)

    n = length(A)                    # ln 1

for j in 1:n-1 # ln 2

        min_idx = j                  # ln 3

for k in j+1:n               # ln 4

if A[k] < A[min_idx]     # ln 5

                min_idx = k          # ln 6

end

end

        A[j], A[min_idx] = A[min_idx], A[j] # ln 7

end

return A                         # ln 8

end

# A dummy algorithm

function dummy(n)

for j = 1:n

        x = 0

for k = 1:(2^j)

            y = 1

end

end

end



Asymptotic notation
We often want to measure the growth of the running time as  increases. For

example, when , the term  dictates the growth in

terms of . We often use asymptotic notation to denote the running time to

make our life easier. We use the notation  to say that the growth

of  is no more than the growth of .

Definition.

We say  if there exist constants  and  such that 

Example. Let  and .

We claim that .

Choose  and . For all ,

One can visualize this by plotting

image description

Therefore, there exist constants  and  such that



and hence .

Here is another way to show . Suppose

where  is some constant, then .

Example.

Let  and . Then

Therefore, .

Example.

Let  and . Then

Using the fact that  as , we get

Hence, .

If you wonder how we get  as , recall from calculus that

logarithmic functions grow more slowly than any positive power of . In

particular, we can use L’Hospital’s rule:

Thus,  grows strictly slower than , and hence  as .

Definition.

We say  if there exist constants  and  such that

Alternatively, this means .


	Asymptotic Notation and Running Time
	Introduction
	Running time
	Asymptotic notation


