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Let R be a ring. The set of all polynomials in the variable x with coefficients in
the ring R is denoted by R[x]. An example of an element in the set R[x] would
be x3 + 5.

Some of you would know that R[x] is a module over R!

Now, let’s look at the polynomial rings R[x] and R[y] - they’re essentially the
same except one consists of polynomials in the variable x, and the other in y.
How are the two related to the polynomial ring R[x, y]?

To make things easier, let’s fix R to be our favourite ring Z. If I pick an element
in R[x], say x3 + 5, and an element from R[y], say 2y, and multiply the two,
then I get the polynomial (x3 + 5)(2y) = 2x3y + 10y, which is polynomial in x
AND y, i.e. an element in R[x, y].

OK - so multiplying an element in R[x] with an element in R[y] seems to give
us an element in R[x, y]. So maybe we can define a multiplication map:

ϕ : R[x] × R[y] → R[x, y],

which sends (f(x), g(y)) to f(x) · g(y).

Can we dare to hope that ϕ is a bijection (or maybe an isomorphism of R-
modules)?

Well, if you’ve had any experience in solving differential equations, and therein
a technique called separation of variables, you’d know this map wouldn’t be
surjective. Indeed, not every polynomial in two variables x and y can be split
into two polynomials of one variable each - one in x and the other in y. For
instance, x2y2 + y can’t be split into the product of a polynomial in x and one
in y.

Is it at least injective? Well, the product of x and 2y is the same as the product
of 2x and y, meaning that the pairs (x, 2y) and (2x, y) map to the same element
under ϕ, meaning ϕ isn’t even injective.

So ϕ is neither injective nor surjective - very disappointing for a map so promising.
Is there ANYTHING nice about ϕ?

Let’s look at what stopped ϕ from being a bijection.

1. ϕ is not surjective because R[x, y] has polynomials other than those that
are a product of a polynomial in x and one in y. However, these nice
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polynomials in the image of ϕ that look like f(x)g(y) GENERATE all the
polynomials in R[x, y] i.e. any polynomial in two variables can be written
as a finite sum of polynomials of the form f(x) · g(y). For instance, in the
example from above, x2y2 + y = (x2)(y2) + (1)(y).

2. ϕ is not injective because ϕ(2x, y) = ϕ(x, 2y). In fact, we know exactly
when two pairs of polynomials will map to the same thing under ϕ: for
any c ∈ R,

ϕ(cf(x), g(y)) = ϕ(f(x), cg(y)) (1)

.

In addition, thanks to the distributive property of polynomials multiplication,
we have ϕ(f1(x) + f2(x), g(y)) = ϕ(f1(x), g(y)) + ϕ(f2(x), g(y)), and a similar
“linearity” in the second component. This, along with the condition described
above in Equation 1 make the map ϕ into what’s called an R-bilinear map.
These properties are what make ϕ VERY special as we shall see now!

Suppose we had another bilinear map F : R[x] × R[y] → A, where A is any
R-module, or even just an abelian group. Let us try to define a group homomor-
phism F : R[x, y] → A using F .

As observed above, R[x, y] is generated by polynomials of the form f(x)g(y),
and so it is sufficient to describe where these generators are mapped to under
F to completely determine the map. We can therefore define F (f(x)g(y)) =
F (f(x), g(y)). The product f(x)g(y) is of course equal to ϕ(f(x), g(y)), and
therefore we have F (ϕ(f(x), g(y))) = F (f(x), g(y)).

The properties of ϕ noted above make sure that this map is well-defined i.e. even
though the definition of F depends on how you split a polynomial - say 2xy - as
a product, it won’t send the same element in R[x, y] to two different elements
in A based on how you split it. For instance, if you write 2xy as 2x · y, then F
would send it to F (2x, y), and if you split it as x · 2y, then F would send it to
the element F (x, 2y) in A. But since ϕ and F are bilinear, these two elements
in A are equal, so there’s no confusion (check this)!

This gives rise to the following commutative diagram (i.e. if you pick an element
in R[x] × R[y], it’ll land on the same element in A no matter which path you
take) -

R[x] × R[y] A

R[x, y]

ϕ

F

F

Since this holds for any choice of abelian group A with a map F : R[x]×R[y] → A,
the above property of R[x, y] is called a universal property. This group R[x, y]
becomes special because it turns bilinear maps from R[x] × R[y] into group
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homomorphisms from R[x, y]. We call R[x, y] the tensor product of R[x] and
R[y] and denote it by R[x] ⊗R R[y] (the subscript R refers to the fact that it is
elements c ∈ R that can be moved around between the two components in the
map ϕ as in Equation 1) .

We are now (hopefully) motivated enough to define the tensor product of two
objects- say modules over a commutative ring R -

Let M and N be two modules over R. The tensor product M ⊗R N of M and
N over R is an abelian group with an R-bilinear map ϕ : M × N → M ⊗R N
which satisfies the following universal property - for any abelian group A and
an R-bilinear map F : M × N → A, there exists a unique group homomorphism
F : M ⊗R N → R such that the following diagram commutes:

M × N A

M ⊗R N

ϕ

F

F

Bonus Question: The whole discussion started with the observation that the
product of a polynomial f(x) in x with a polynomial g(y) in y gives a polynomial
in two variables x and y i.e. an element in the set R[x, y]. But we could have also
taken the SUM of f(x) and g(y) and still ended up with an element in R[x, y].
Could this have been used to get to the tensor product? Or does the sum map
give us some other universal property?
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