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In this note, we study automorphic forms and representations of GL(2).

First, we describe local theory, archimedean and non-archimedean, and then
global theory. This note is mainly a summary of a part of Bump’s Automorphic
forms and representations [bu], from chapter 2 to 4.
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1 Introduction

Modular forms and Maass wave forms are certain functions defined on the com-
plex upper half plane that satisfies SL(2, Z)-transformations laws (or more gen-
erally, transform under congruence subgroups I'o(N)). There are a lot of ap-
plications of modular forms in number theory, such as sum of squares and the
irrationality of ((3), and the Wiles’ famous proof of Fermat’s Last Theorem.
There are also applications in other subjects, such as combinatorics (partition
numbers), physics, representation theory (monstrous moonshine), knot theory,
etc.

In this note, we will study how to interpret such functions (so-called classical
automorphic forms) as a representation of adéle groups GL(2,A) (here A is a
ring of adéles of global fields such as Q), and study representation theory of
it. This can be a starting point of the Langlands’ Program, which connects
representation of Galois groups, algebraic geometry, and automorphic forms
(representations).

To study such representations, we first study local representations. There
are two kinds of local representations - archimedean and non-archimedean. For
the archimedean cases, we study representation theory of GL(2,R) via so-called
(g, K)-modules. (g, K)-module is a vector space with compatible gc = gl(2,C)
and K = O(2)-actions. It is easier to study (g, K)-modules than studying
the representation of GL(2,R) directly since (g, K )-modules are more algebraic.
We will classify (g, K)-modules for GL(2,R) and also study which of them are
unitarizable, since we are interested in the representation that lives in L? space.
Also, we will see how these representations are related to classical automorphic
forms (such as modular forms and Maass wave forms).

We also have non-archimedean representations - which are representation of
p-adic groups GL(2, Q,) for a prime p. They are very different from archimedean
cases because of their topology. This makes the situation easier or harder, but
anyway, we will also classify all the representations of such groups and study
their unitarizability.

When we finish the local theories, we can glue these representations to obtain
the representation of the adéle group GL(2,A). (In fact, this is not a true rep-
resentation of GL(2, A), but a representation of (geo, Koo) X GL(2, Afp).) While
we are studying such representations (local or global), we will only concentrate
on some nice representations (admissible representations) that are close to the
representation of finite groups. Automorphic representations are some nice rep-
resentations that also satisfies some analytic conditions on growth. Later, we
will see that Flath’s decomposition theorem tells us that it is enough to study
such glued representations to study automorphic representations.

Before we get into the representation theory of GL(2,A), we will study
GL(1, A) first, which are completed by Tate in his celebrated thesis. He find a
natural way to prove the analytic continuation and the functional equation of
Hecke’s L-function using local-global principle, and such idea will be used to
define L-functions attached to automorphic representations of GL(2, A).

It may be hard to study an abstract representation of a given group (such as



GL(2,R),GL(2,Q,) or GL(2,A)). Whittaker model (or Whittaker functional)
help us to study such representations as a very concrete representation that
functions on the group lives (and the group acts as a right translation). Most
case, such Whittaker model exist and unique, and such results are called (local
or global) multiplicity one theorem. In the last section, we will see how the
multiplicity one theorem is related to the classical modular forms.



2 Archimedean theory

In this section, we will study representation theory of the group GL(2,R). Usu-
ally, it is easier to study representation of compact groups than non-compact
groups because it is not much different from the representation theory of finite
groups. First, any finite dimensional representations are unitarizable, by taking
average of arbitrary hermitian inner product on the space over all group with
respect to Haar measure, which is finite for compact groups. Also, we have
celebrated Peter-Weyl theorem, which claims that any unitary representation
(including infinite dimensional representation) on a complex Hilbert space is
semisimple, i.e. can be decomposed as a direct sum of irreducible dimensional
unitary representations, and these are all finite dimensional and mutually or-
thogonal. It is also known that representation of compact group are completely
determined by its character.

Also, Lie algebra representations of g = gl(2,R) (or its complexification
gc = gl(2,C)) are much easier than studying the representation of Lie group,
because it is a linearlized version of original representation and we have a lot of
tools to use. We even have a complete classification of semisimple Lie algebra
over C, which is a very rich theory itself.

Instead of studying representations of GL(2,R) directly, we will study repre-
sentation theory of its maximal compact group O(2) and Lie algebra represen-
tation of gl(2,R). Eventually, we will consider so-called (g, K)-module, which is
a vector space with compatible actions of g and K, and the space is not so big
to deal with, i.e. admissible. We give complete classification of (g, K)-module
for GL(2,R)* and GL(2,R), and investigate which of them are unitarizable.
Since unitary representation of GL(2,R) is completely determined by associated
(g, K)-module, we also get a complete classification of unitary representations.

In the last subsection, we will also see how the representation theory of
GL(2,R) can be used to study spectral problems (of classical automorphic
forms).

2.1 Representation theory of gl(2,R)

Geometrically, Lie algebra of a Lie group is a tangent space at the identity,
and it has a structure of Lie algebra given by a Lie bracket. In case of G =
GL(n,R)* and GL(n,R), their Lie algebra is g = gl(n,R) = Mat(n,R), the
space of n x n real matrices with the Lie bracket [X,Y] := XY — Y X. The
most important point is that any representation of Lie group induces a Lie
algebra representation.

Proposition 2.1. Let G be a Lie group and g be a Lie algebra of G. Let (w, V)
be a finite dimensional representation of G such that g — 7(g)v is a smooth
function for all v € V. Then we have an induced Lie algebra representation

dr: g — End(V) given by

(dnX)v = % tzoﬂ(exp(tX))v



where exp : g — G is the exponential map.

The finite dimensionality assumption is non really necessary. In fact, we
will only consider special kind of representation: right regular representation on
C*(@G). The statement is also true for this case, even if the space is not finite
dimensional.

Proposition 2.2. The map d : g — End(C*(G)) defined as

(dXf)(9) f(gexp(tX))

" dtli=o

18 a Lie algebra homomorphism, i.e. d is a Lie algebra representation of g on

C=(G).

By the universal property of universal enveloping algebra Ug, any Lie algebra
representation 7 : g — End(V') can be extended to a representation of Ug. We
will regard Ug as a ring of differential operators, which are left-invariant since
Lie algebra action is obtained by differentiating right regular representation.
When the element is in the center Z(Ug) of the universal enveloping algebra
Ug, it is both invariant under the left and right regular representations.

Theorem 2.1. Let G = GL(n,R)™ and let g = gl(n,R). If D is an element of
Ug, then D is invariant under both the left and right regular representations of

G.
Proof. The proof is a little technical. We need the following lemma:

Lemma 2.1. Let G = GL(n,R)" and let X € g = gl(n,R). Suppose that
¢ € C*(G x R) satisfies

o
ot
and the boundary condition ¢(g,0) = 0. Then ¢(g,t) =0 for allt € R.

¢(g> t) = dX(/l)(g’ t)

Proof. This can be done by method of characteristic. Let ¢4(u,t) = ¢(gexp(uX),t)
for g € G. If we make the change of variables as t = v + w and u = v — w, the
equation is equivalent to

0

%d)g(v—w,v—kw) =0

50 ¢g(v —w, v+ w) is independent of w and ¢4(v —w, v+ w) = F,(v) for some
Fy, € C*(R). This gives ¢q4(u,t) = Fg((u+t)/2) and the boundary condition
implies that Fyy = 0, so ¢, = 0. O

Now apply the lemma for the function
¢(9,t) = (Dp(exp(tX))f — p(exp(tX))Df)(g)

and we get the result. Note that G is generated by exp(g). O



Now we will concentrate on n = 2. g = gl(2,R) is generated by the elements
= 0 1 0 0 = 1 0 10
(o) 200 A=l ) 2=600)

with relations
[H,R)=2R, [H,L|=-2L, [R,L]=H.

™~

Now let L

A= _Z(fﬂ +2RL + 2LR)
be an element in Ug, where the multiplication is in Ug, not a matrix multiplica-
tion. This is a very special element in Ug, which is called the Cacimir element.

The element is in the center of Ug, and in fact the center is generated by A and
Z.

Theorem 2.2. A lies in the center of Ug = Ugl(2,R).
Proof. This follows from direct computations and relations among fi, E, H. O

We will consider the complexification g¢ = gl(2,C) of g and slightly modify
the elements R, L, H in gl(2,C) as

1(1 i 11 —i (0 1
R_2<i —1)’ L_2<—z' —1)’ H__Z(—1 0)'

Then they satisfy the same relations as R f, and H. Indeed, we have
CHC'=H, CRC™'=R, CLC™'=1

1+i (i 1
“=" (z —1)

is the Cayley transform. We will see the reason why we are using R, L, H instead
of R, L, and H, in section 2.6.

For an arbitrary representation (m,$)) of G, there may not exists a corre-
sponding Lie algebra action on ) since the limit may not exists. We will define
H>™ as a largest subspace where such action exists, i.e. the limit 7(X)f =
Xf =4, _om(exp(tX))f exists for all X € g and f € H. We will call such
f as smooth vector, and we can easily check that such space is invariant under
the action of G from the equation

where

R(X)r()f = n(s) (Jim § (r(exp(eAd(a™)X))f - 1))

Also, the action of g on $H° is a Lie algebra representation. We define the action
of C(G) on $ as
w(o)f = [ oto)r(a)fdg

for ¢ € C°(G). We can show that the subspace ™ of smooth vectors is not
so small, indeed, it is dense in ).



Proposition 2.3. Let (7, ) be a Hilbert space representation of G = GL(n,R)
or G =GL(n,R)".

1. If $ € C°(G) and f € 9, then w(o)f € H°.
2. H™ is dense in $).
Proof. For 1, we can check that m(X)n(¢)f = n(¢x)f where

d

= 2| dlexp(=tX)g).

ox(9)
Hence 7(¢)f is differentiable and we can repeat this to get w(¢)f € H°.
For 2, we use 1 with appropriate function ¢. For given ¢ > 0, continuity of
(g, f) — 7(g)f implies that there exists an open neighborhood of the identity
of G such that |n(g)f — f| < e for all g € U. Now take ¢ € C°(G) to be a
nonnegative function with supp (¢) C U and [ ¢(g)dg = 1, so that

Im(@)f — f] < /G H@)m(9)f — fldg < e

which proves that H°° is dense in . O

2.2 Representation theory of compact group

In this section, we will see how representations of compact groups well-behaves.
We will prove the Peter-Weyl theorem, which claims that every representation
of a compact group decomposes as a direct sum of finite dimensional irreducible
representations.

For any finite group G and it’s irreducible representation (7, V') (which has
finite degree), we can construct a G-invariant inner product on V: choose any
inner product (, )1 : V x V — C and define a new pairing (, ) : VxV — C as

<U7 w> = Z<7T(9)U’ 7r(g)w>1.

geG

Then this pairing is also an inner product on V and it is G-invariant by defini-
tion. We can do the same thing for a representation of compact group K on a
Hilbert space $), by integrating a given inner product on over K with respect to
its Haar measure. (Note that compact group has a finite Haar measure.) This
induces same topology as before.

Lemma 2.2. Let (7,$) be a representation of a compact group K on a Hilbert
space (9, (, )1). There exists a Hermitian inner product {, ) on $) inducing the
same topology as the original one and K -invariant.

Proof. We define such inner product on ) as

<U,1U>=/K<7T(I€)U,7T(K,)w>1dli.



It is easy to check that this defines a new inner product which is K-invariant. By
Banach-Steinhaus theorem, we can found a constant C' > 0 such that C~t|v|; <
|7(k)v|1 < Clu|; for all v € § and x € K, and this proves C~t|v]; < |v] < Clo);
for all v. Hence topologies are same. O

Now we will prove the most important theorem in the representation theory
of compact groups, Peter-Weyl theorem. For a representation (7, $)) on a Hilbert
space $) of G, a matriz coefficient of the representation is a function on G of
the form g — (w(g)x,y). We need the following proposition:

Proposition 2.4. Let G be a compact group and (71, Hy), (72, Ha) be represen-
tations where (ma, Ho) is unitary. If there exists matriz coefficients f1, fa of m
and 7y that are not orthogonal in L*(G), then there exists a nonzero intertwining
operator L : Hi — Ho.

Proof. Assume that f; = (m;(g)z;,y;) such that

o)) = /G @) folg)dg = /G (@), 1) (ma(g)a2, y2)dg # 0.

Then the bounded linear map L : H; — Hs defined as

L(v) = /G (m1 ()0, 1) a9~ yady

gives a nonzero intertwining operator, since (xo, L(x1)) = ((f1, f2))- O
Theorem 2.3 (Peter-Weyl). Let K be a compact subgroup of GL(n,C).

1. The matriz coefficiens of finite dimensional unitary representation of K

is dense in C(K) and LP(K) for all 1 < p < 0.
2. Any irreducible unitary representation of K is finite dimensional.

8. Any unitary representation of K is semisimple, i.e. decomposes as a
Hilbert direct sum of (finite dimensional) irreducible representations.

Proof. By embedding GL(n,C) — GL(2n,R), we can assume that K is a sub-
group of GL(n, R) for some n. We call a function on K a polynomial function if
it sis a polynomial with complex coefficients in terms of n? entries of matrices in
K C Mat(n,R). We first show that any polynomial function on K is a matrix
coefficient of a finite dimensional representation. Indeed, let r € Z~( and (p, R)
be the representation of K where R is a space of polynomial functions of degree
< r on Mat(n,R), where K acts by right translation. We can find a Hiermitian
inner product on R which is K-invariant, and by Riesz representation theorem
there exists fo € R such that f(1) = (f, fo) for all f € R, since f +— f(1) is a
bounded linear functional on R. Then

f(g) = (p(9)f)(1) = (p(9) [, fo)



so the function f is a matrix coefficient of R.

Now we prove 1. It is known that C'(K) is dense in LP(K) for any 1 <
p < 00, and Stone-Weierstrass theorem implies that any continuous function on
K can be uniformly approximated by polynomial functions, which are matrix
coefficients.

To show 2 and 3, it is enough to show that any nonzero unitary representa-
tion (7, 9) of K admits a nonzero finite dimensional invariant subspace. Choose
any nonzero matrix coefficient ¢ of §) and approximate it by a polynomial func-
tion ¢, so that ¢ and ¢ are not orthogonal. Then the proposition [2:4] shows
that there is a nonzero intertwining map L : R — $ for a finite dimensional
representation R of polynomial functions, and the image of L is a finite dimen-
sional invariant subspace of §). This proves 2, and 3 also follows from this with
applying Zorn’s lemma. O

Using Peter-Weyl theorem, we can define admissibility of representation of
G for G = GL(n,R)* or GL(n,R). A representation (m,$) of G is admissible
if each isomorphism class of finite dimensional representations of K occurs only
finitely many times in a decomposition of 7|k. This implies that for each ir-
reducible representation p of K, the isotypic component $(p) of (7|k,$), the
direct sum of all the subrepresentations of (7|x,$)) isomorphic to p, is finite
dimensional. We can check that multiplicity of a given finite dimensional repre-
sentation does not depend on the decomposition. Also, it is a right category to
study since it is known that any irreducible unitary representation is admissible.

The next result shows that in the decomposition of irreducible admissible
unitary representation §) over K, the multiplicity of the trivial representation
of K is at most one. To prove this, we need the result about commutativity
of Hecke algebra C°(K\G/K) which can be proved by Gelfand’s trick with
Cartan decomposition.

Theorem 2.4 (Gelfand). Let G = GL(n,R) and K = O(n), or G = GL(n,R)™"
and K = SO(n). Let C(K\G/K) be a subalgebra of C°(G) which are K -bi-
invariant, i.e. ¢(kigr2) = ¢(g) for all g € G and k1,ke € K, where the
multiplication is given by convolution. Then C°(K\G/K) is commutative.

Note that C°(G) is non-commutative.

Proof. We need the following decomposition theorem of Cartan, which we will
not going to prove. Basically, this follows from the induction on n.

Proposition 2.5 (Cartan). Let G = GL(n,R) and K = O(n), or G = GL(n,R)*
and K = SO(n). In either case, every double coset in K\G/K has a unique
representative of the form

d;
) dieRa dldeZZdn>0



Now let ¢ : C°(K\G/K) — C*(K\G/K) be a map defined as «(¢(g)) =
#(g) = ¢(Tg). Then this map ins an anti-involution of C°(K\G/K):

(1% d2)(g /m (T gh) s (h)dh
_ / o261 (Thg)dh
G
- /G 5o ()G1(h=2g)dh = (32 % B1)(9)-

By the way, Cartan’s decomposition theorem allow us to decompose g as g =
k1dky where Ky, iy € K and d is a diagonal matrix. Then ¢(g) = ¢(d) = ¢(d) =
@(g), so that ¢ = id and ¢ * 2 = Pax ¢y, i.e. C°(K\G/K) is commutative. [

For n = 2, we can prove a similar result when we consider the subalge-
bra of C’°°(G) where K acts as a nontrivial character o, i.e. ¢(kigra) =
o(k1)P(g)o(ka). Let C°(K\G/K, o) be a subalgebra of such functions.

Proposition 2.6. Let G = GL(2,R)" and K = SO(2). Let o be a character of
K. Then C*(K\G/K,o) is commutative.

Proof. The proof is almost same, but we use the following involution

Now we can prove the uniqueness of the K-fixed vector.

Theorem 2.5. Let G = GL(n,R) and K = O(n), or let G = GL(n,R)" and
K = SO(n). Let (m,$) be an irreducible admissible unitary representation of
G. Then dim $H¥ < 1. Similarly, dim 9 < 1 for each k € Z, where $, = {v €
9 1 w(ke)v = ok (kg)v} for on(kg) = 0.

Proof. By admissibility, we know that $% is finite dimensional. C*(K\G/K)
can be realized as a commutative family of normal operators on a finite dimen-
sional space, which are simultaneously diagonalizable. Therefore there is a one
dimensional invariant subspace Vj of HE , which should be whole HE by irre-

ducibility. The proof is almost same for $); except that we use commutativity
of C*(K\G/K,o}) instead of C°(K\G/K). O

Note that the admissibility condition is unnecessary because any irreducible
unitary representation is admissible (as we mentioned above).

10



2.3 (g, K)-module for GL(2,R) and classification

Now we can define the (g, K)-module, which is a thing what we really want
to study. In some sense, the subspace $*° of smooth vectors is still too big to
study. We will consider much smaller space, the space of K-finite vectors $gy,
which is also dense in $ but much easier to study algebraically.

Definition 2.1. Let (7, ) be an admissible representation of G = GL(n,R) or
GL(n,R)*. We may assume that o|i is a unitary representation of K, so that
o|k decomposes as a Hilbert space direct sum of the isotypic parts $(o) for each

o€ K. Now let Han be the algebraic direct sum of the H(c). We call f € Han
as K-finite vectors.

Proposition 2.7. For f € $, TFAE:
1. f € Hn-
2. (n(k)f : k € K) is finite dimensional.
3. (Xf : X €t) is finite dimensional (here ¢ = Lie(K)).

Proposition 2.8. Let (7,%) be an admissible Hilbert space representation of
G = GL(n,R) or G = GL(n,R)*. The K-finite vectors are smooth, and Hgn is
dense G-invariant subspace of $H°°.

Proof. Let $H9 = H*° N Han. We will first show that $y is dense in H>°. For
given f € $, we will find suitable ¢ € C*°(G) such that 7(¢)f is sufficiently
close to f and 7(¢)f € $Ho. To do this, let U be a small open neighborhood
of the identity in G and let € > 0 be a given constant. Choose Uy C U and
V C K such that VU; C U. Let ¢1 be a smooth positive-valued function with
supp (¢1) C Uy and [}, ¢1(g)dg = 1. Also, by Peter-Weyl theorem, we can find
a matrix coefficient ¢g of a finite dimensionalunitary representation (p, R) of K
such that [, ¢o(k)dk =1 and fK\V |po(k)|dr < €. Now let

)= [ ¢o(k)or(r™"g)dr
/

Then one can check that fG\U |6(g)|dg < €, so that (@) f is sufficiently close to

f. To show that 7(¢)f is K-finite, let ¢g(r) = (p(k)&,n) where &, n are vectors
in R. Then for k1 € K, we have

b1(n1g) = / (p(RE, plra)))ohs (5™ )i

K

so the space of functions (b(li;l g) lies in the finite dimensionalspace spanned by
functions of the form

gH/ R)E )bk g)dk, ¢ € R,

11



This is a finite dimensionalspace of functions, so the space spanned by the
vectors

r(k1)n(0)f = / &(g)m(rrg) fdg = / o(s7 9)m(9) fdg
G G

is finite dimensional. Hence 7(¢)f € $an by the previous proposition. This
shows $g is dense in $).

To show 5, C H°°, it is enough to show that Ho(c) = H (o) for all irreducible
representation o of K. Clearly, $p(0) C $(0), and if they are not same for some
o, then we can find 0 # f € (o) orthogonal to $o(o), Then this f is orthogonal
to $o(7) for all 7 # o, which contradicts to the denseness of £ in H°.

For g-invariance, let f € R C $) be a K-finite vector where R is a finite
dimensional t-invariant subspace. Let R; be a space generated by Y f for Y € g
and f € R, which is also a finite dimensional space. For X € £ and Y € g,
X(Y¢) = [X,Y]¢p + Y(X¢) shows that Ry is E-invariant so Y f is a K-finite
vector. O

Motivated by this, we define a notion of (g, K)-module, which is a vector
space of K-finite vectors with compatible g, K actions.

Definition 2.2. Let G, K, g,t as above. A vector space V' with representations
7w of K and g is called (g, K)-module if

1. V is K-finite, i.e. 'V decomposes into an algebraic direct sum of finite
dimensional invariant subspaces under the action of K.

2. The representations of g and K are compatible in the sense that

R(X)f = $|  mlesptx))s

forall f €V and X € &.

3. The representations are compatible with adjoint action in the sense that

m(g)m(X)m(g~ ") f = n(Ad(9)X) f
forall feV,ge K, and X € g.

For example, if (7, $) is an admissible representation of GL(2,R), then $g,
is a (g, K)-module. We will classify all the irreducible admissible (g, K)-module
for GL(2,R). First, we will do for G = GL(2,R)" with K = SO(2), and modify
it to get the result for GL(2,R) with K = O(2).

Let V be a irreducible admissible (g, K)-module, so that it can be decom-
posed as an algebraic sum of isotypic parts

V= @ V(o) (algebraic sum)

12



where each V(o) is finite dimensional. Since K = SO(2) is abelian, all the
irreducible representations are 1-dimensional, and they are parametrized by
integers as oy (kg) = e’*?. Hence we can write V as

V=V

kEZ

where V (k) = V(o). Each V(k) is at most 1-dimensional by Theorem
Now we can extend the g-action to Ugc-action naturally. The set ¥ ={k € Z :
V (k) # 0} is called the set of K-types. We have the following Schur’s lemma
for (g, K)-modules.

Proposition 2.9. Let V' be an irreducible admissible (g, K)-module. If D €
Z(Ugc) is an element in a center of Ugc, then D acts as a scalar on V.

Proof. We can naturally extend the adjoint action Ad of G on g to Ugc by
Ad(g)(z1 ®@ - ®z,) = Ad(g)r1 @ - - ® Ad(g) ;.

One can check that D is fixed by this action by the third condition of (g, K)-
module, so that m(k) o D = D ow(k) for k € K. Consequently, the isotypic
subspaces V(o) are stable under D. Choose any nonzero V(o). Since it has finite
dimension, there exists a nonzero eigenvector o € V(o) with an eigenvalue A.
Let Vy C V(o) be an eigenspace of A. Since D is in the center, it commutes
with the action of g and K, so that Vj is a nonzero invariant subspace. Thus
we have V =V (o) = V}. O

This proposition shows that the elements Z, A acts as scalars on V. (This
will be the parameter to classify (g, K)-modules later.) The following proposi-
tion gives a description how the elements R, L, H, Z, A € Ugc acts .

Proposition 2.10. Let V be an irreducible admissible (g, K)-module for GL(2,R)™.
1. V(k) is the eigenspace for H with an eigenvalue k.
2. R(V(k)) CV(k+2) and L(V(k)) CV(k—2).

3. If0 £z e€V(k), thenV(k)=C.z,V(k+2n) = C.R"x,V(k—2n) = C.L"x
forn >0 and
V=Cz® @ C.R"z @ @ C.L"z.

n>0 n>0
4. dimV (k) <1 and if V(k),V(l) are both nonzero, then k =1 (mod2).
5. Let X\ be an eigenvalue of A on' V. If x € V(k), then

= (-4 (14 8)) o= (5 (0-)-

k) and Rx = 0, then
)

6. Let \ be an eigenvalue of A on V. If0# x €V
)\z—g(l—l—g), while if Lx =0, then)\zg(l—

—~

NIy
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7. Suppose that A = % (1 — g) and x € V(I). If Rx = 0, then either l = —k
orl=k—2, and if Lx =0, then either l=Fk orl =2 —k.

Proof. Every statement follows form the relations among R, L, H and A. O

By the proposition, we have that the set of K-types of V is all even or all
odd. This defines a parity of V, even or odd. The following theorem tells us
the uniqueness of representations, whether we don’t know the existence yet.

Theorem 2.6. Let A\, u be complex numbers.

1. Assume that \ # % (1 — g) for all k even (resp. odd). Then There exists
at most one isomorphism class of even (resp. odd) (g, K)-modules V' such

that A, Z acts as scalars \, . For such V , the set of K-types consists of
all even (resp. odd) k.

2. Assume that A = % (1 — %) for some integer k > 1. Then there are three
possible sets of K-types:

ST(k)={l€Z :1=k(mod2),l >k}
S (k)={l€Z:1=k(mod2),l < —k}
Y(k)={lcZ :l=k(mod?2),—k <<k}

Proof. Basically, all of these follows from the previous proposition, 6 and 7. For
the uniqueness, we will only show the first case. Let V,V’ be two irreducible
admissible (g, K)-module with the same set of K-types. Choose 0 # = € V (k)
and 0 # 2’ € V'(k), then z, L™z, R®x (for n > 0) form a basis of V, and
similarly ', L™z’, R"2' (n > 0) form a basis of V’. Now if we define ¢ : V. — V'
by ¢(z) = 2/,¢(L"z) = L™z’ and ¢(R"x) = R™z’, then we can easily check
that this is a nonzero (g, K )-module homomorphism from V to V. O

Now we will give a construction of such representation with given parameters,
which will finish the classification. Let € = 0 or 1, which represents parity of a
representation, and let s1,s2 be two complex numbers. Let A = s(1 — s) and
I = S1 + S2, where s = %(31 — 89+ 1). As you expect, these will be scalars
corresponding to A and Z.

Definition 2.3. H>(s1, s2,€) be the space of smooth functions f : GL(2,R)* —
C satisfying

x | B
f ((yl y2> g> =y +1/2y§2 1/2f(g), s > 0

(Y L)) =cos.

We let G acts by right translation. We also give a Hermitian inner product by
27

(Frof) =5 [ ule)Falra)do

0

and let H(s1, $2,¢€) be the Hilbert space completion of H*(s1, s2,€).
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Note that the right translation action (regular action) extends to H(s1, s2, €).
We can also prove that H(sy, sa,€) is the space of smooth vectors for this
representation. By Iwasawa decomposition, we have

1/2 ~1/2
flg) =1 ((u u) (y xyy—l/Q ) n9> = u T2y f(rg)

for f € H(s1, $2,€), so each f is determined by its value on K = SO(2), and f|x
can be any smooth function, subject to the condition f(kgsr) = (—1)¢f(kg).

In fact, the representation is an example of an example of induced represen-
tation. For a locally compact Hausdorff group G and its subgroup H, we can
obtain a representation of G from a representation of H in a canonical way: if
(p, V) is a representation of H, then define

1/2
Vo - {f .G C: f(hg) = (‘”’””) p(h)f(g)}

da(9)

where 87, 6 are modular characters. If we give G-action on V¢ by right trans-
lation, then this gives a representation of G. We denote such representation
by Ind%(p). Now let G = GL(2,R)*, H = B(R)* (the subgroup of upper
triangular matrices in G), and let x : B(R)™ — C* be a character defined as

X
X (y1 y2) = sgn(y1) [y |™ |y2]*.

Then, by definition, the representation H(s1, s2,€) is just Indg (x). Note that
G is a unimodular group (so that ¢ is trivial) and

OB(R)+ <y1 x) :&.
(R) Yo Yo

Now we want to study (g, K)-module of K-finite vectors in $ = H(_sl, So,€).
If I = € (mod 2), then there exists a unique f; € $ such that f;(xkg) = €??, which
satisfies p(kg)fi = € f;. Iwasawa decomposition gives an explicit description

Offll
u 1/2 x -1/ s1+s82,,5 1

By the direct computation, we can show that this function satisfies the following
relations:

Proposition 2.11.
Hfi=1f

Rfi = <S + ;) fi2

Lfi= <S - ;) fiz

Afr =M
Zfi = ufi
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where A = s(1 — s), = s1 + s2,5 = 5(s1 — 52+ 1).

Now, as you expect, these representations give examples of the previous
representations with two parameters A, u and K-type. The above f;’s generate
the space of K-finite vectors.

Theorem 2.7. Let s1, 52,8, \, i, € are given as above, and let § be the (g, K)-
module of K -finite vectors in H(sy, s2,€), where A, Z acts as A\, u, respectively.

1. If s is not of the form % for k = e(mod 2), then $) is irreducible.

2. If s > % and s = g for some integer k > 1 with k = € (mod 2), then $
has two irreducible invariant subspaces H4,9_, with the set of K-types as
Yt (k), X7 (k), respectively. The quotient $/($4 @ H_) is irreducible with
a set of K-type ¥(k) for k # 1, where zero for k = 1.

8. If s < % and s = 1 — g for some integer k > 1 with k = €(mod2),
then $ has an invariant subspace Ho which is irreducible and whose set
of K-types is ¥°(j). The quotient $/$o decomposes into two irreducible
invariant subspaces $4 and $, with the set of K-types X (k), X~ (k)
respectively.

In other words, this gives a classification of (g, K)-module for GL(2,R)".

Theorem 2.8 (Classification of (g, K )-module for GL(2,R)"). Let \, u be given
complex numbers and € € {0,1}.

1. If X is not of the form %(1 — g) for k = e(mod?2), then there exists a
unique irreducible admissible (g, K)-module of parity € on which A and Z
act by scalars A and p, and we have ¥ = {k : k = e (mod 2)} in this case.

2. If A = g (1- g) for some k > 1, k = e(mod 2), then there exists three
irreducible admissible (g, K)-modules of parity € on which A and Z act
by scalars \ and u, except that if k = 1, there are only two. The set of
K -types are X (k) and (if k > 1) X°(k).

When A is not of the form g (1 — g), then the equivalence class of irreducible
admissible (g, K )-modules of GL(2,R)* with given X, o are denoted by P, (), €).
When p = 0, we denote it as P(\,€) and it is called principal series. (By
tensoring with a suitable power of determinant, we can assume p = 0 easily.)
Later, we wiil check that the representation is unitarizable if and only if A € R
and A > 1/4, so we will concentrate on this case.

The finite dimensional representation with a set of K-types %°(k) can be
realized as a space of polynomials: consider the space of homogeneous polyno-
mials of degree k — 2 in two variables x1, 2, and let G = GL(2,R)™ acts on the
space by

(9)f (1, w2) = det(g)# 22 f((w1,22)9),

which is a degree k —1 irreducible admissible representation where Z acts as the
scalar p. This will not appear again since it is not unitarizable. (We will prove
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that the only finite dimensional unitarizable representation is 1-dimensional,
which factors through the determinant map.)

If £ > 1, we have irreducible admissible representations with set of K-types
as Y (k), and equivalence class of these representations will be denoted as
fo(k) and called the discrete series. When k = 1, the representations fo(l)
are called limit of discrete series.

To classify (g, K)-modules of GL(2,R), we need some modification. We can
check that the representation of O(2) has a symmetric property: the set of K-
types is symmetric so that k € ¥ if and only if —k € X. Hence Dif (k) cannot
be extended to GL(2,R), but D}t (k) ® D, (k) can be. We will denote the latter
one by D, (k), with (g, O(k))-module structure.

For the construction of principal series reresentation of GL(2,R), we define
X : B(R) — C* as

X (yl ;) = x1(y1)x2(y2)

for xi(y) = segn(y)|y|*, where ¢; € {0,1} and €1 + €2 = € (mod2). Then we
denote IndEI&g’R) (x) as H(x1,x2), and we will denote by m(x1, x2) the under-
lying (g, O(2))-module of K-finite vectors. Note that H(x1,x2) ~ H(s1, S2,€)
since each function in H(x1, x2) is determined by its restriction to GL(2,R)™".
So there are two extensions of the GL(2, R)"-module structure on H(s1, $2,¢€)
to a GL(2, R)-module structure (corresponds to the choice of (e1,€2)), and the

same is true for the corresponding (g, K)-modules.

Theorem 2.9 (Classification of (g, K)-module for GL(2,R)). 1. The finite
dimensional representations have a form of Sym" pg ® (x o det), where pg
is the standard representation and x : R* — C a character.

2. If x1,x2 are characters of R* such that x1x5 " # sgn(-)¢| - |*~*, where

€ = k (mod 2), then w(x1, x2) is an irreducible admissible (g, O(2))-module.

3. If w € C and k > 1 an integer, then we have discrete series D, (k) (k > 2)
and limits of discrete series D, (1).

2.4 Unitaricity and intertwining integrals

Now we will see which representations in the above list are unitarizable. For
some special case (so-called complementary series), we will show that the rep-
resentation is unitary by using the intertwining integral, which is an hidden
explicit isomorphism between two isomorphic (g, K )-modules.

The following theorem tells us that induced representation of unitary repre-
sentation is again unitary in some special case.

Theorem 2.10. Let G be a unimodular locally compact group, P be a closed
subgroup, and K be a compact subgroup such that PK = G, so that P\G is
compact. If (0,V) is a unitary representation of P with an inner product (,),
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then the induced representation Indg(a) 15 also unitary with respect to the inner
product

(1. f2)) = /K (), fol)) s

Proof. Tt is easy to check that the function g — (f1(g), f2(g)) is in C(P\G,9),
i.e. satisfies f(pg) = d(p)f(g) for all p € P and ¢ 6 G. One can prove that the
linear functional I : C(P\G, ) — C defined as I(f) = [, f(x)dk is G-invariant
under the right regular representation by shovvlng that the map A : C.(G) —

C(P\G,8),¢ — (g — fp (pg)dp), is surjective and I(Af) = [, f(g)dg. For
details, see Lemma 2.6.1 in [bu]. O

Using this, we can prove that there are some class of representations that
are induced from unitary representation, so is unitarizable.

Theorem 2.11. Let p be a pure imaginary number, )\ > 7 L be a real numbers,
e € {0,1}, and assume that X is not of the form £ (1 — 5) for any integer
k =e(mod2). Then P,(\ €) contains a unitary representatzon of GL(2,R)*.

Proof. With the assumption, we can easily check that si,ss satisfying p =
51+ S2,8 = 5(s1 — s2 + 1),A = s(1 — s) are all pure imaginary. Then the
character x : B(R)* — C* defined as

X
X <y1 y2> = sgn(y1) [y |y2[*

is unitary and the induced representation that is contained in the class P, (A, €)
is also unitary by the previous theorem. O

f (m,9) is a unitary representation of G and X € g, then the action of
X on H* is skew-symmetric, i.e. (Xv,w) = —(v,Xw) for all v,w € H™.
Especially, we have (Rv,w) = —(v,Lw). The following theorem give some
necessary conditions for unitaricity.

Theorem 2.12. Let (m,$) be a unitary representation of G = GL(2,R)™
1. If Z and A in Ug acts by scalars p and A, then u € iR and A € R.

2. Assume that (m,$) is in the class of P.(\,€), where X is not of the form
(1 — 7) for integer k = ¢ (mod2). If e =0, then A > 0, and if ¢ = 1,
then A > l

Proof. 1 follows from the fact that Z € g, so action is skew-symmetric, and the
action of A is symmetric. For 2, we know that $(k) # 0 for all k = € (mod 2).
From —4A — H? + 2H = 4RL, Hfy, = kfx (where 0 # fr € $(k)), and
(RLf., f) = (Lf., Lf.) > 0, we get —4\—e?+2¢ < 0 which gives the results. [

From the above theorems, we know unitarizability of P,(\,€) except for
e=0and 0 < A < %. We will also show that these representations are also
unitary, but induced from nonunitary representations of Borel subgroup. Such
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representations are called complementary series, and the corresponding eigen-
values are exceptional eigenvalues.

To construct such representation, we will use intertwining integral. We know
that H(sy, s2,€) and H(sg, s1,€) are isomorphic, when they are irreducible, as
(g, K)-module since they have the same A and u. Also, when they are not
irreducible (when A = g (1 - g)) they are not isomorphic, but their composition
factors are isomorphic. We will construct an intertwining map between those
to representations as an integral.

For s € C, the operators M (s) are defined by

i = £ ((T ) (5 1)e) e

The next proposition shows that this is the desired intertwining map, when the
integral converges.

Proposition 2.12. Let f € H™(s1,892,€) and suppose Rs > % where s =

%(sl — 89+ 1), so that Rsy > Rsa. Then the integral M(s)f is convergent and
define an intertwining map

M(s) : H*®(s1,82,€) = H™(s2, s1,€).

Also, it sends a K-finite vector to a K -finite vector, which therefore induces a
homomorphism of (g, K)-modules H(s1, 2, €)an — H(s2, 51, €)fin-

Proof. Tt is almost direct to check that the map is indeed an intertwining map,
if we know that the intertwining map is convergent. For the convergence, we
only need to check convergence for g = 1 (since M (s) is an intertwining map).
The identity

-1\ /(1 =z A7 —zAT
1 1)~ A, )@
Ay =+1+22, 6(x)=arctan (—i) .

gives
o0

(M(s)£)(1) = / (14 22)™ (o),

— 00

and by the boundedness of f on K, the integral converges if

o 1
———dx
/—oo (1 +22)%
converges, which is true for Rs > % To check that M(s)f € H*(sa, s1,¢€), it is
enough to check the following equations

arn ((*§)s) = o)
e (M ),)9) = bl H0r01)0)
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for £ € R and y1,y2 > 0, which can be checked by direct computation (with
some substitutions). Smoothness and K-finiteness are also can be easily checked

from
oo

(M) = [ (42 gy

— 00

We can also compute the effect of M(s) on a K-finite vector.

Proposition 2.13. If Rs > %, we have

T(s)T (s — 1)
F(s+3)0(s—3)

M(s)frs = (-1)*Vm frea-s

Proof. Tt is enough to show for g = 1, which is equivalent to

= o o T(s)T' (s — 3)
/,oo(lﬂ )7 explikb(e))de = (C1)Vr (s+ %)F(si 3)

2=t the integral equals

Under the substitution y = £ -

22’(—1')1@4*8/0(1 _ y)stz(_y)g,sdy

where C' is a contour consisting of unit circle centered at the origin and moves
counterclockwise. For the convergence, we may assume ®(2s— 1), R(4 —s) > 0,
and use analytic continuation on k. If we deform the contour C so that it
proceeds directly from 1 to O along real axis, circles the origin in the coun-
terclockwise direction, then returns to 1 along the real line, then the integral

became

1
2i(_i)k475[6—z7r(sfk/2) _ em(sfk/Q)]/ (1 _ y)2572yk/2—sdy
0

()L (s — 3)

)

— (-DtVF
which follows from the Beta function identity and some other formulas of Gamma
function. O

Now we can prove that the complementary series is unitary.

Theorem 2.13. Let p € iR and 0 < A < %. Then P,(A,0) contains a repre-
sentative that is a unitary representation.

Proof. For s1,s2 € C, we have a Hermitian pairing
H(s1,82,€) x H®(—=51,—53,¢) = C

) /K F () PR
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which is G-invariant.

Now assume that s; = —S3 and so = —357, so that p = s7 + s € iR and
s = %(51 —s2+ 1) € R. Since H*®(s2, $1,¢) = H®(—31,—33,¢€), we can define
Hermitian pairing on H*(sy, s2,€) by

. f) = /K J ()T (5) ) (R,

which is G-invariant. We only need to show that this pairing is positive definite,
and it follows from the following computation

(fros frs) = (—1)§\/E T(s)T' (s —3)

which is positive for é < s < 1 and even k. O

In contrast, finite dimensional representations are not unitary in general. In
fact, the easiest ones are the only one which are unitary.

Proposition 2.14. The only irreducible finite dimensional unitary representa-
tion of GL(n,R)" are 1-dimensional character g — det(g)” where r € iR.

Proof. Finite dimensional unitary representation of GL(n,R)* can be regarded
as a homomorphism 7 : GL(n,R)™ — U(m) where m is the dimension of the
representation. Since U(m) is compact, image of 7 is also compact. It is known
that SL(n,R) is simple for odd n and PSL(n,R) = SL(n,R)/{£I} is simple for
even n, so the only compact homomorphic image of SL(n, R) is the trivial group.
Hence SL(n,R) C ker 7 and the representation factors through the determinant
map. Now we know that the only unitary representation of R} are of the form
t— t" for r € iR. U

The only thing remain that we have to figure out is unitarizability of discrete
series. We will prove that there is a unitary representation in the infinitesimal
equivalence class D*(k) for k& > 1, by constructing such representation on a
space of holomorphic functions on H which has bounded L?-norm. We know
that p € iR if the representation is unitary, and we may assume p = 0 as before.

Theorem 2.14. 1. Let $ be the space of holomorphic functions f on the
upper half plane H which satisfies

dzd
[ 1P <o
H Y
Define the G = GL(2,R)™ action on $ by

(7 (9)£)(2) = (ad — be) "/ (Fbz + d)* f (:Fbﬁd) 9= (j g) .

Then (7%, $) are admissible unitary representations in D* (k).
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2. Let Z be the center of G = GL(2,R)T. Then the right reqular represen-
tation of G on L*(G/Z) contains an irreducible admissible representation
in the class D*(k).

Proof. The automorphism ¢ : G — G defined as

(€)= V)

relates 7+ and 7~ by 77 (g) = 7 (¢(g)). Thus it is sufficient to show that
(m—,$) is an irreducible admissible representation in D~ (k).
Define the representation (m, $) by

m(9)f = flrg™"

where | is the weight k slash operator, i.e.

(Flig) (=) = det(g)*/>(cz + d)™* ( - Z)

for g € GL(2,C). Then m ~ 7~ since 7~ (g)f = m(wogwy ) f for wo = (¥ 3.
So it is enough to show that (,$) is an irreducible admissible representation
in D~ (k).

Let s1 = —sg = (k—1)/2, so that s = k/2 and p = 0, and let € € {0,1}
with € = k(mod2). We can define a bilinear pairing ((,)) : H>(s1,s2,€) X
H*>(—s1,—82,¢) = C by

(o) = [ 10t
which is G-equivariant. Now we define a map o : H®(—s1, —$2,€) — C®(G)

by
(0f)(g9) = ({p(9) fr,s, )

(EN)(2) =y~ 2(0f) ((y/ le—;ﬂ))

then the function

is an holomorphic function on #H that satisfies (X f|g)(¢) = (cf)(g). (Holomor-
phicity follows from L(of) = 0.)
We will now prove that

Sfia—s = c(l)(z — i)~ 0HR/2(5 4 )I=R)/2
for some constant ¢(l) which is zero for [ > —k. We have

(0 fi1-5)(rag) = ((p(9) frsr p(rig ) fr1-6)) = €= (0 fi1-)(9),
and this implies that the function ¢ = X f; 1_, satisfies

¢|k“<‘9 _ e*ilﬁ(b.
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If C = -4 (1 1)) (Cayley transform), ¢ := ¢4|C ! is a function on the unit

disk with ‘
,¢’ 67,9 _ 7'Ll0w
i e—i0 ] = €

and if we consider the Taylor expansion of 1, we get 1(w) = cw(~'=*)/2 for some
constant ¢, which implies ¢ = ¢(I)(z — i)~ tF)/2(z +4)=F)/2 where ¢(I) = 0 for
I > —k. From this, the kernel of the map ¥ : H(—s1, —s2,€) — C¥(H) contains
the (reducible) invariant subspace (f;1-s : [ > 2 — k), and we can check that
Y fi,1—s are all square-integrable for [ < —k by using the explicit description, so
the image lies in ). Also, X f; 1, span §) for [ < —k because as a function on
the unit disk (via Cayley transform), power series expansion of a holomorphic
function on the unit disk can be regarded as a Fourier expansion in terms of
Y fi1—s. This completes the proof of 1.

For 2, note that the correspondence between of and Xf is an isometry,
and this gives a realization of D~ (k) in the left regular representation of G
on L*(G/Z), and it can be transferred to the right regular representation by
composing with g — g~ 1. O

The limits of the discrete series representation D* (1) also can be realized in
a space of holomorphic functions on ‘H with the norm

1% = sup / \f(a + iy)Pde,

y>0J -0

but we don’t need this since they are subrepresentations of H (0,0, 1), which is
already unitary.

Until now, we studied which (g, K')-module arises from irreducible admissible
unitary representation of GL(2,R)T. The following theorem tells us that this
actually classifies all the irreducible unitary representations.

Theorem 2.15. Irreducible admissible unitary representation of GL(2,R)™T is
determined by the corresponding (g, K)-module.

Proof. Let (m,$) and (7', $’) be irreducible admissible unitary representations
of G = GL(2,R)* such that the spaces V = Hg, and V’ = §f are isomorphic
as (g, K)-modules, and let ¢ : V' — V' be an isomorphism. Decompose V and
V'ias V = @, V(k), V' = ®,V'(k) and choose k so that V (k) # 0. Then we
can find 0 # x € V (k) which satisfies || = 1, and by normalizing ¢ we can also
assume that |¢(z)| = 1. (Note that all the spaces V' (k) are at most 1-dimension.)
Then

k k

|Rz|? = (Rx, Rx) = —(LRz,z) = </\+§ <1+ ;)) (x,z) = A+ 3 <1+ 2) ,

and we get the same result for |R¢(z)|. By repeating this, we can prove that
|R"x| = |R"¢(z)| and |L"x| = |L™¢(x)| for all n > 1, which proves that ¢ is an
isometry. Since $) and §’ are Hilbert space completions of V and V', we can
extend ¢ to an isometry ¢ : $ — 8.
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Now we have to show that ¢ is an intertwining operator. For f € V = 95,
and X € g, we have

o)) = 32 o) = 3 LX) = (o)

and the result follows from the fact that V' C § is dense and G is generated by

elements of the form e. O

By combining all of the results, we get the following classification.

Theorem 2.16 (Unitary representations of GL(2,R)%). The following is a
complete list of the isomorphism classes of irreducible admissible unitary repre-
sentations of GL(2,R)*:

1. 1-dimensional representation g — det(g)* for u € iR.
The principal series P,(X, €) with p € iR, e € {0,1} and X € R with A > i.

The complementary series Py, (X,0) with p € iR and 0 < X < 1.

™

The holomorphic discrete series and limits of discrete series D,ﬁf(k) with
€ R,

2.5 Whittaker models

Now we know all the representations of GL(2,R). However, if someone give an
arbitrary abstract representation, then it is not easy to study it directly. To
resolve such a problem, we may realize the abstract representation as a space
of certain functions with an explicit and easy action (right translation). This is
a main philosophy of Whittaker models, and we will show that it is possible to
realize almost all representations as a space of such functions.

Let W : GL(2,R)* — C be a smooth function that satisfies

w((*])s) = v

for a fixed nontrivial unitary additive character of R, which has a form of ¥(z) =
U, (x) = €' where 0 # a € R. We say that W is of moderate growth if, when
we express the function W in terms of u, z, y, 6 via Iwasawa decomposition, it is
bounded by a polynomial in y as y — oo. We say that W is rapidly decreasing
if yVNW — 0 as y — oo for any N > 0. We say that W is analytic if it is locally
given by a convergent power series. The function W satisfying the functional
equation and of moderate growth is called Whittaker function.

The following proposition shows uniqueness of such function with fixed eigen-
values of A and Z.
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Proposition 2.15. Let u,A € C and k € Z. Let W(X, u, k) be the space of
Whittaker functions with prescribed eigenvalues A\, i of A, Z and weight k, i.e.
the space of functions W : GL(2,R)* — C satisfying

w ((1 f) gf”ve) = ¥(2)e™ W (g)

AW = AW
ZW = uW

and is of moderate growth. Then W(A, u, k) is one-dimensional, and a function
in this space is actually rapidly decreasing and analytic. Also, the operators R
and L map W(\ p, k) to WA\ p, k +2) and W(\, p, k — 2), respectively.

Proof. We will assume that ¢(z) = 11 2(z) = €**/2. The condition ZW = puW

implies
(" )o)-mo

. 1/2
W(g) = ue ™2y (y),  w(y) =W (y y—1/2)

and we get

/2 g1/
where g = (") v/ Iyy_ll/;) kg. Then the condition AW = AW is equivalent
to the 2nd order differential equation

1 k A
" = N A _
w+( 4+2y+y2>w 0.

It is known that there exists two linearly independent solutions of this equa-
tion, Wg’sfé(y) and Wﬁg}sfé(—y), which are asymptotically e~%/2y*/2 and
e¥/2(—y)~F/2. (Here s = £ +(—A+3)/2, and such functions are classical Whit-
taker functions.) Thus the assumption of moderate growth excludes the second
solution and W(A, p, k) is 1-dimensional space spanned by the function

Wk,/\,,u(g) — uuei(az/2+k9)w 137%(y)’

[NIE

which is known to be rapidly decreasing and analytic. The statement about
R and L action also follows from analytic properties of classical Whittaker
functions. U

From this, we can prove uniqueness of Whittaker model.

Theorem 2.17. Let (7, V) be an irreducible admissible (g, K)-module for G =
GL(2,R)* or GL(2,R). Then there exists at most one space W(m, 1)) of smooth
K-finite Whittaker functions W which is isomorphic to (m,V) as a (g,K)-
module. Every function in W(m, ) is rapidly decreasing and analytic.
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Proof. Let u, A be scalars corresponds to action of Z and A. Decompose V as
@,V (k). If V(k) # 0, then its image under the isomorphism with W(r,) is
W(A, i, k), and the previous theorem implies uniqueness and analytic properties.

O

Such uniqueness is important, and we also have uniqueness theorem for non-
archimedean local fields (we will prove this in Chapter 3 using the theory of
Jacquet functor). By combining uniqueness result for archimedean and non-
archimedean local fields, we get the global result, which is called multiplicity
one.

2.6 Classical Automorphic Forms and Spectral Problem

In this section, we will see how the representation theory relates to classical
modular forms, Maass forms and spectral problems.

First, the elements R, L, H, A € Ugc coincide with the classical Maass op-
erators. Recall that we have (weight k) Maass differential operators

.0 k
Be=(-25 +35
.0 k
bi==(=25 -3

and the (weight k) Laplacian

02 o? 0

Ap =y == + = | iky=—

r Y (8x2 * 8y2) Y
which acts on the space of smooth functions on H, the complex upper half plane.
Since H =~ SL(2,R)/SO(2), we can lift such function as a smooth function
on SL(2,R), so on G = GL(2,R)T by letting it translation invariant under

ZR)* ={(*,) : a > 0}. This gives a 1-1 correspondence between space of
functions on H and on G. More precisely:

Proposition 2.16. Let ' be a discrete cofinite subgroup of G and let x : I’ —
C* be a character. Let L*>(T\H, x, k) be a space of functions f(z) on H satis-
fying

e = (20 s (ZE) < e, = (% D) er

and

dxzd
/ FEPEY -
I\'H Y

Similarly, let L*>(T\G, x, k) be a space of functions F(g) on G satisfying

F(ygukg) = x(7)e™F(g), veT,ueZ g€ G, rgeSO(2)
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and

/ |F(g)2dg < oo,
G/z+

There is a Hilbert space isomorphism
or : L*(T\H, x, k) — L*(T\G, x, k)

given by
(oxf)(9) = (fllkg) (D).

Proof. Proof follows from direct computations. The inverse map is given by

- ()

for given F € L*(T\G, x, k). O

The main point is that under this isomorphism, Maass differential operators
and the (weight k) Laplacian operator correspond to the elements R, L, A € Ugc
we defined.

Proposition 2.17. Let R, L, H, A be elements in Ugc we defined before. Then
it acts as differential operators on C*(G). We have

o[ 0 9 10
__ 240 . -~ -
ar=e (Zyax“Lyay“Lmae)

, o a8 10
_ =20 [ _ . -~ -
b= (’yax“’ay 2i89)
B

dH = —Z%

L[ 02
A=-v <8x2+8y2>+yaxae

where x,y,0 are parameters in the Iwasawa decomposition of g € G. Also, we
have

Opy20 Ry = Rooy, op20Ly=Looy, opolAr=Aoo0y.
We know that there are three types of automorphic forms on I'\ H:

1. Holomorphic modular forms: For a given character y : I' - C* and k > 1
with x(—I) = (=1)*, a weight k& holomorphic modular form on T is a
holomorphic function f : H — C satisfying f(vz) = x(7)(cz + d)¥ f(2) for
all v € ', z € H, and holomorphic at the cusps of I'.

2. Maass forms: Also a function on H, but smooth, not holomorphic. f :
H — C satisfies (f||x7)(2) = x(7)f(2) for v € T, and an eigenfunction of
the Laplacian operator Ay.
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3. The constant function. f(z) =1 for all z € H is clearly invariant under
(any) discrete subgroup I' C G. More generally, f(z) = y° is also an
automorphic form for any s € C.

Why are there precisely these types of automorphic forms on '\ and no oth-
ers? You may see that this list of automorphic forms are very similar to the
classification of (g, K)-modules of GL(2,R)" (and GL(2,R)). In fact, this gives
an answer to the above question. We can consider such an automorphic form
f(2) on H as a function F(g) on G (by the above map o}, ), and we can consider
a (g, K)-submodule generated by the single element F'(g). This is an irreducible
admissible (g, K)-module (admissibility is a result of Harish-Chandra, see The-
orem , and the previous classification gives us three types of automorphic
forms.

Another important question is the spectral problem. We can formulate it as
follows:

1. Determine the spectrum of the symmetric unbounded operator A on
L2(T\M, x. k).

2. Determine the decomposition of the Hilbert space L?(I'\G, x) into irre-
ducible subspaces.

We don’t know the complete answer yet, but we understand some of them.
First, one can prove that such decomposition exists.

Theorem 2.18. L?(T'\G, x) decomposes into a Hilbert space direct sum of ir-
reducible representations, and L?*(T\H,x,k) decomposes into a Hilbert space
direct sum of eigenspaces for Ay.

Proof. First statement uses Zorn’s lemma. If we define ¥ to be the set of all
sets S of irreducible invariant subspaces of L?(I'\G, x) such that the elements
of S are mutually orthogonal, then there exists a maximal element S in . If
we put $) as the orthogonal complement of the closure of the direct sum of the
elements of S, then one can show that $ = 0. (For details, see Theorem 2.3.3
in [bu].)

For the second statement, it is equivalent to showing that L?(I'\G,x, k)
decomposes into direct sum of eigenspaces of A. In Proposition [2.6] we showed
that C°(K\G/K,0) is a commutative ring, where o(kg) = e'*’. For each
character ¢ of C°(K\G/K,0), let H(&) := {f € L*(I'\G,x, k) : 7(¢)f =
E(@)f, ¢ € CX(K\G/K,o)}. Here C°(K\G/K,0) C C*(G) acts as

(d)f = / o(g)m(9) fdg.

G

One can show that
L*(T\G,x, k) = P H(9),
13
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where the direct sum is a Hilbert space direct sum and & ranges through all
distinct characters of C°(K\G/K, o) with H(§) # 0. Each of H(§) is finite di-
mensional. (Most of the result follows from the spectral theorem for self-adjoint
compact operators, applied to m(¢). See Theorem 2.3.4 of [bu] for details.)
Since A commutes with 7(¢) (recall that H lies in the center of Ugc, and it
is both invariant under left and right regular representations - see Theorem
2.1)), the spaces H(£) are A-invariant, so these decomposes as a direct sum of
A-eigenspaces since A is self-adjoint. Hence L*(T\G, x, k) also decomposes as
Aj-eigenspaces. O

Now the previous classification of irreducible admissible unitary representa-
tions of GL(2,R)™ gives the decomposition of L?(I'\G, x). For each irreducible
subspace H of it, A acts as a scalar A = A(H) on H and it depends only on
the isomorphism class of H. According to the value of A, the different types
of irreducible admissible unitary representations occur as constituents of the
decomposition with some multiplicity.

Theorem 2.19. The right reqular representation of G on L*(T\G,Y) decom-
poses as following:

L*(N\G,x) =C1EP &y m(\, €)P(\, )
)x;ﬁ%(l— ) =e (mod 2)

&
x>

N

Dl P dko@ k) eD *)

k>1
k=e (mod 2)

where m(\, €) is a multiplicity of P(\ €) in the decomposition, which is equal
to the multiplicity of the eigenvalue \ in L*(T\H, x, k) for k = e(mod?2), and
d(k,x) = dim My (T, x), the dimension of the space of weight k holomorphic
modular forms on I' with character x.

Proof. The only point worth to mention is the connection between discrete
series representations and holomorphic modular forms. The multiplicity of
D* (k) equals the dimension of the % (1 — %)-eigenspace in L?(T'\G, x, k), or
in L2(T\'H, x, k). This eigenspace is isomorphic to the space of modular forms
My(T', x): let H be an irreducible subspace that is isomorphic to D* (k). Then
H(k—2) = 0 implies that Ly f = 0 for any f € L>(T'\H, x, k). This is equivalent
to y~*/2f(2) to be a holomorphic modular form in My (T, x). O

It is not hard to compute d(k,x) (using Riemann-Roch theorem or other
tools), but it is extremely hard to compute m(\, €) and we conjecture that all of
them are one, but until now, we don’t know any single exact value of it. (There
are some known upper bounds.) It is known that if T' is cocompact (i.e. T\H is
compact), it is known that the spectrum of Ay, on L2(T'\H, x, k) is discrete and
the eigenvalues A\; < A9 < --- tend to infinity.
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3 Non-archimedean theory

Now we will get into the representation theory of GL(2, F') over non-archimedean
local fields. Archimedean and non-archimedean cases are very similar, but also
very different. Their topologies are completely different from archimedean case,
which make the situations easier or harder. However, their representations are
very similar. For example, we can construct most of the representation from
principal series representations, which are induced representations of characters
of Borel subgroup, as in the archimedean case.

There are some other representations that do not come from principal series
representations, which are called supercuspidal representations. Such represen-
tations are also interesting, and we will present some methods to construct such
representations (Weil representations).

3.1 Smooth and admissible representation
In this section, we will fix some notations as follows:

e [: a non-archimedean local field

e O: a ring of integers

e p: the unique maximal ideal of O

e w: a uniformizer, i.e. generator of p

k = O/p: a residue field

q: cardinality of k

v: F — ZU{oco}: normalized valuation of F
e dx: nomalized additive Haar measure
e d*x: normalized multiplicative Haar measure

The biggest difference between archimedean and non-archimedean local fields is
the topology. Every group over non-archimedean local fields that we will see will
be totally disconnected locally compact spaces. Such groups always have a basis
of open subgroups at the identity, which can be chosen as normal subgroups
when G is compact. For example, in case of G = GL(n, F'), the subgroups
K(@w™) (n > 0) of elements in GL(n, O) congruent to identity modulo ©™ forms
such a basis, and these are even normal in a compact subgroup GL(n, O).

As in the archimedean case, we will concentrate on representations that we
can handle, which are smooth and admissible representations.

Definition 3.1. Let G be a totally disconnected locally compact group and (mw, V')
be a representation of G. We say that m is smooth if Stab(v) = {g € G :
m(g)v = v} is open for allv € V. If 7 is smooth and VY = {v € V : w(g)v =
vVg € U} is finite dimensional for any open subgroup U C G, then V is called
admissible.
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One can check that complex representation of G is smooth if and only if the
map 7 : G XV — V is continuous, where V is given by usual complex topology.

Admissible representations are important because they satisfy important
properties that also holds for representations of finite groups. Also, most of the
properties can be proved by using the corresponding result of representations
of finite groups. For example, the following theorem shows that any smooth
representation of totally disconnected locally compact group is semisimple, and
each isotypic part of the decomposition is finite dimensional if and only if the
representation is admissible.

Proposition 3.1. Let (7, V) be a smooth representation of G and K be a com-
pact open subgroup of G. Then V is semisimple, i.e.

V= @ V(p) (algebraic direct sum).
pef(

7 is admissible if and only if V(p) is finite dimensional for all p.

Proof. We show first that V' C Zpe}? V(p). For v € V, it is fixed by a compact
open subgroup Ky of K, which can be assumed to be normal. Then

veVRe =@Vi(p) > Vip)

pef pef{

where I' = K/ Ky, which is finite.

To show that the sum is direct, let’s assume that it is not, so ZpES cpv, =0
for some finite subset S C K, v, € V(p) and ¢, € C that are not all zero. If we
put Ko = Nyes ker(p), then we obtain a contradiction to the directness of the
summation for I' = K /K.

For the last statement, V' (p) C V*'(?) implies that V'(p) is finite dimensional
if 7 is admissible since ker(p) is an open subgroup. Conversely, if 7 is not
admissible, then V¥ is infinite dimensional for some open normal subgroup K
of K. From V%o = D KTy V(p), since K/Kj is a finite group, V(p) is infinite

dimensional for some p. O

We call that a linear functional v : V' — C is smooth if there exists an
open neighborhood U of identity such that (7(g)v,v) = (v,?) for all g € U and
v € V. We will denote the space of smooth linear functionals as ‘7; For any
representation (7, V'), we define its contragredient representation (7,V') by

(v, 7(9)0) = (m(g™")v, ).

By smoothness, we can check that V also decomposes as
V=vi"
P
so the contragredient of an admissible representation is admissible.
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As in the archimedean case, representation 7w of G on the space V induces
an action of Hecke algebra H = C2°(G) of compactly supported smooth func-
tions, i.e. locally constant functions, where the multiplication is given by the
convolution

(61 % 62)(g) = /G 61 (gh™")éa(h)dh.

The action of H is given by

() = /G o(g)m(g)vdg

which satisfies 7(¢1 * ¢2) = 7(d1) o w(d2). Note that the above integration
is actually a finite sum. There’s no identity in the algebra H. However, for
any compact open subgroup of G, the subalgebra of K-biinvariant functions
Hri, = C(Ko\G/Kp) has an identity element

1
€x, = 7 1K,-
Ky |K0| Ko

The following proposition shows that irreducibility of the representation is equiv-
alent to irreducibility of correponding Hecke algebra representation.

Proposition 3.2. Let (7, V) be a smooth representation of G. TFAE:
1. 7 is irreducible.
2. V is a simple H-module.
3. VEo is either zero or simple H,-module for all open subgroup Ky of G.

Proof. We will show that G-invariance of subspace is equivalent to H-invariance,
which proves 1 < 2. Clearly, G-invariant space is also H-invariant. Conversely,
let W C V be a H-invariant subspace. Assume that W is not G-invariant,
so that n(g)w # w for some g € G and w € W. Now w is fixed by some
neighborhood N of the identity, so let ¢ = ﬁ]lgN then we have w = 7(¢)w =

¢(g)w, a contradiction.

3 = 2 is also simple: assume that V is not simple and let W C V be a
proper H-submodule. From V = Ug, V¢ we can find K{ small enough so that
W o is a nonzero proper subspace of Vo,

For 2 = 3, let Wy C VX be a nonzero proper Hg,-submodule. We will
show that 7(H)Wo N VEe = Wy, which implies that 7(H)Wj is a nonzero
proper H-submodule of V. Assume that w = Y, 7(¢;)w; € m(H)Wo N VEo,

where w; € Wy. Since w; € VEo and w € VEo we have m(ex,)w; = w;
and 7(ex,)w = w, which shows that w = ), m(ex, * ¢; * €x,)w;. However,
€K, * ;i * €x, € HK, and since Wy is ‘H,-stable, we get w € Wy, O

Another important feature is that irreducible admissible representations are
determined by their characters. For a representation of a finite group G, we
defined its character as a trace of the representation, i.e. the function y :
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G — C defined as x(g) = Tr(w(g)). We can also define character of admissible
representations as a distribution on H = C2°(G). The key property of trace
is that the trace of L : V' — V is same as the trace of restriction L|y on any
invariant subspace W C V. From this, we can define the character x : H — C
as follows: for any f € H, there exists an open compact subgroup K such
that f € Hg,. Then VEo is invariant under 7(f), which is a finite dimensional
subspace, so the trace of the map is well-defined and we let x(f) = Tr(w(f)).

Theorem 3.1. Let (71, V1) and (72, Va) be irreducible admissible representa-
tions of the totally discommnected locally compact group G. If characters of m
and mo agree, then the two representations are equivalent.

Proof. 1t is known that for any k-algebra R, structure of simple R-module is
completely determined by traces of endomorphisms induced by multiplication of
elements in R. Hence the assumption implies that V;** ~ V' as H x,-modules
for any open compact subgroup K; of G.

Let K be a small open compact subgroup so that VlK0 and V2K° are nonzero.
By hypothesis, we have an H g,-module isomorphism o, : VlK0 — VQKO, which
is unique up to constant by Schur’s lemma. Then for any open subgroup K; C
Ky, we can extend ox, uniquely to a Hg,-module isomorphism o, : VlK1 —
V1. Indeed, the existence is in our hypothesis and from VX0 = 7;(ex, )V,
we have

o, (V) = o, (m1(exo )W) = ma(ery )0k, (Vi) = maler, )V = V5,

SO Ok, : VlKO — V2K0 is an Hg,-module isomorphism, and uniqueness

|V1K0
implies that the restriction of ox, and ok, agrees up to scalar, so we can
assume that they coincides on VlK“ by normalizing. Now we can repeat this for
an open compact basis of identities {K, },>0, and we get a map o : V3 — V5
which is an H-module isomorphism.

To show that o is an intertwining operator, let ¢ € G and v € V;. Choose

an open compact subgroup K such that v € VX1, and let ¢ = ﬁ]lg K,. Then
m1(¢)v = m1(g)v and ma(P)o(v) = m2(g)o(v), and we get

o(mi(g)v) = o(mi(@)v) = ma(d)o(v) = m2(g)o(v).
This shows that ¢ is an intertwining operator between V; and V5. O

Using the theorem, we can prove that contragredient representation of GL(2, F')
is isomorphic to other representations on the original space with different actions
by comparing characters.

Theorem 3.2. Let G = GL(n, F) with F non-archimedeal local field, and let
(m, V') be an irreducible admissible representation of G.

1. Let (m1,V) be a representation defined as m1(g9) = 7(Tg™"'). Then 7 ~ 7.

2. Forn =2, let w be the central quasi-character of w. Define (w2, V) on the
same space as ma(g) = w(det(g))~tn(g). Then T ~ ms.
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Here the central character w : F* — C* is a character corresponds to the
action of 7 restricted to Z(F'). Note that the center acts as a scalar by Schur’s
lemma.

Proof. For ¢ € C(G),let ¢',¢" € C®(G) as ¢ (g9) = d(g7 1), ¢"(9) = o(Tg ™).
We know that character is conjugation invariant, and it is known that conju-
gation invariant distribution on GL(n, F') is also transpose invariant. (This is
a nontrivial result proved by Bernstein-Zelevinski. You can found a proof in p.
449 of [bu].) Hence we have

X (@) = Xﬂ(¢//) = Xﬂ(d’l) = Xz(®)

where the last equality follows from the fact that 7(¢) and 7(¢’) are adjoints of
each other, so have equal trace.
For 2, the following identity

Ty (det(g) det(g)) g, we (1 _1>

shows that m(w) is an intertwining operator from (71, V) to (w2, V). O

By the previous theorem, we can directly check that irreducibility of admis-
sible representation is preserved by taking dual.

Proposition 3.3. Let m be an admissible representation of GL(n, F). Then 7
1s irreducible if and only if T is irreducible.

Proof. m-invariant subspace is also 7y-invariant. O

There’s one more thing worth to mention about totally disconnected locally
compact groups. We use the following no small subgroup argument several
times, which is very useful and important.

Proposition 3.4 (No small subgroups argument). Let G be totally disconnected
locally compact group, so that it has a basis of open neighborhoods of the identity
consisting of open and compact subgroups. For any homomorphism ¢ : G —
GL(n,C), the kernel ker ¢ contains an open subgroup.

Proof. 1t is enough to show that there exists an open neighborhood N of the
identity of GL(n,C) that does not contain any nontrivial open subgroups. Then
we can take the compact open subgroup that is contained in ¢~!(N). To show
the existence of such N, let g = gl(n, C) be its Lie algebra and let exp: g — G’
be the exponential map. Since exp is a local homeomorphism, we can find an
open neighborhood U C g of the identity such that exp : U — exp(U) is a
homeomorphism. Fix an inner product on g and we can assume that U is of
the form {v € g : |v| < € for some e > 0. Let V =1U ={v €g: 2v €
Ul ={veg: |v <e2}. We will show that exp(V) contains no nontrivial
subgroups. Suppose that H is a nontrivial subgroup contained in exp(V)