
Perceived Issues with Interaction Nets
written by Eashan Hatti on Functor Network
original link: https://functor.network/user/721/entry/466

I really like the idea of interaction nets, which means I’m obligated to learn at
least a little about them. It seems to me that they have fundamental issues that
make them impractical, so I’ll post them here and hope someone can prove me
wrong ;)

Interaction nets are seen as promising for huge performance gains because of
two things:

1. They allow for optimal evaluation
2. They allow for massive parallelism

Let’s work through the two and find the issues.

Optimal Evaluation is not Necessarily Optimal Performance

Interaction nets are said to allow for optimal evaluation. The first thing we have
to do is actually define this, because it does not mean “optimal performance”.
Optimal evaluation refers to the very specific concept of work – work is time
spent performing a computation. If evaluation is optimal, multiple computations
that produce the same result will not be evaluated multiple times – the results
will be shared between all of the computations so that they don’t have to repeat
a task. The problem is that you gain this optimal time complexity in exchange
for horrible space complexity, the brackets and croissants used to implement
the “bookkeeping” that higher-order sharing requires can build up and result in
exponential memory consumption.

Alright, so interaction nets inherently require enormous space blowups, but
what if we just say that’s fine? We have huge amounts of memory at our
disposal and we can probably employ some dumb optimizations to make the
space consumption at least manageable. The problem here becomes that the
optimal evaluation that interaction nets give us just isn’t that useful in the first
place.

Let’s add some nuance to the first paragraph, when do we actually need optimal
evaluation? We need it whenever we have lambdas – any sort of higher-order
terms. The problem that interaction nets really solve is sharing under lambdas.
Languages such as Haskell already do a lot of sharing! Computations are
memoised and so only performed once, except for one main case: Namely, when
they are inside a function – function bodies have to be duplicated. Interaction
nets do not have this issue, and so achieve optimal sharing.

The problem with this is a very concrete one – in practice, the performance gains
of interaction nets just don’t match up to the traditional optimizations we have

1



for functions. The place interaction nets start to really show massive performance
gains is in massively higher order programs, the kinds of programs you only get
if you use stuff like Church encodings, and these higher order programs appear
very rarely in practice. Because of this, the theoretical performance gains of
interaction nets never have a chance to actually be realized.

In practice, you don’t want to optimally evaluate stuff like basic addition. You
can get much higher performance by just using native integers and machine
instructions. And the more and more you do this, the less and less you exploit
the actual benefits of interaction nets.

Applicability of Massive Parallelism

The second benefit of interaction nets that people tout is massive parallelism.
There are some easy criticisms of this that I’ll start with, namely that CPUs just
can’t exploit this property of interaction nets because they don’t have enough
cores. So of course, you move to GPUs and FGPAs, but by doing that you’re
limiting the applicability of interaction nets – you can’t use them for as many
tasks because they have to be used on specialized hardware.

But an even more fundamental thing here is that we can already realize this
massive parallelism in more traditional languages. The lambda calculus already
can be massively parallelized to somewhat the same effect as interaction nets,
see Futhark. The advantage of interaction nets is that fundamentally every
computation can be parallelized, but we run into the same issue as with optimal
evaluation – that the kinds of workloads that that property benefits just don’t
appear in practice, and the bookkeeping runtime costs of doing all that parallelism
offset the potential gains.

TL;DR: Interaction nets allow us to parallelize and compute optimally on the
most fine-grained levels possible, but the space/hardware overhead of doing that
means that all but the most utterly massive computations end up being slower
in practice as opposed to traditional methods.

2


	Perceived Issues with Interaction Nets
	Optimal Evaluation is not Necessarily Optimal Performance
	Applicability of Massive Parallelism


