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The book Asset Allocation: From Theory to Practice and Beyond by Kinlaw et

al. (2021) is one of my favorites as it gets a few myths about mean variance

optimization right, which are constantly parroted, even in academic papers to

motivate some fancy new method as solution. It also provides useful solutions to

a portfolio manager’s or allocator’s practical questio like when to rebalance.

In chapter 13 on Forecasting the authors introduce a method called partial

sample regression / relevance-based prediction, which provides an interesting

perspective on a linear regression’s prediction and generalizes it into a direction

akin to the Nadaraya-Watson kernel regression.

Linear Regression
Say we are in a time-series setting with  past observations of input variables 

 and a corresponding output variable . Now, at , we get

realizations of  and are asked to predict .

What’s the prediction of a linear regression? We start with the general form and

rewrite it in terms of de-meaned quantities. In the following,  is

the full coefficient vector including the intercept and 

 is the vector of slope coefficients only.

In  we separate the intercept  from the slope coefficients, noting that 

. In  we substitute the least squares expression for the

intercept, . In  we collect the terms that multiply . In  we

define  as the de-meaned current observation. The sample

means are:
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Tedious Algebra
The reason I reformulated the linear regression’s prediction a bit is to set the

stage for further reformulations. Equation  shows that the prediction is the

sample mean of the outcome plus a correction term. To work with the correction

term in isolation, we subtract  from both sides of :

Now we substitute the least squares estimator 

 into  and rearrange:

In  we divide both the matrix in the inverse and the vector on the right by .

This is permissible because  cancels between numerator and denominator. In 

 we replace  with  in both factors, which again cancels, but  is the

conventional normalisation for sample covariance matrices. In  we recognise

the sample covariance matrix . In  we pull 

 inside the sum, since it does not depend on the summation index .

Equation  is already revealing: the de-meaned prediction is a weighted sum

of de-meaned outcomes, where the weight on observation  is the inner product 

. But we can go further by decomposing this inner product into

geometrically interpretable pieces.

Because  is de-meaned, its sum vanishes: . Any

constant multiplied by this sum is therefore zero. In particular,  is a

scalar that does not depend on . Subtracting it inside the sum does not change

the result:



 repeats . In  we subtract a term that equals zero. In  we absorb

the constant into the sum.

We now want to replace the bilinear form  inside  with something

more interpretable. Since  is symmetric and positive definite, 

 defines an inner product, and  its

induced (squared) norm. Every inner product satisfies the polarisation identity,

which we verify by direct expansion:

In  we expand the quadratic form . In  we

distribute the . In  the squared-norm terms cancel pairwise: 

with , and  with . In  we use the

symmetry of , which implies .

Reading  from right to left gives us the decomposition we need:

This is the matrix-weighted analogue of the scalar identity 

. We substitute  into :



 repeats . In  we replace  using . In  the terms 

 from  and  from  cancel.

We add  to both sides of  to recover the actual prediction. Since 

, we also restore the original (un-centered) notation inside the

quadratic forms, noting that  and 

:

Predictor Space Geometry
Let’s inspect the two quadratic forms in . Both are instances of the 

Mahalanobis distance, a distance measure that accounts for the variance of and

covariance between the input variables through the inverse covariance matrix 

. Where the ordinary Euclidean distance treats every direction in predictor

space equally, the Mahalanobis distance stretches directions of low variance and

compresses directions of high variance, effectively standardizing the

measurement. In the special case  (uncorrelated variables with unit

variance), the Mahalanobis distance reduces to the Euclidean distance.

The first term, , is (half) the squared Mahalanobis

distance of observation  from the historical average. It measures how unusual

this observation was relative to typical conditions. Kinlaw et al. call this quantity

Informativeness : observations far from the mean are more likely to carry

real event-driven information, while near-average observations are more likely

to be noise.

The second term, , is (half) the squared Mahalanobis

distance between observation  and the current conditions . Its negative,

which enters with a minus sign, is what Kinlaw et al. call Similarity :



observations close to the current situation are similar, and the negative

Mahalanobis distance is largest (closest to zero) for observations that resemble

the present.

With these definitions in hand, we reorder the terms in  and label them:

Kinlaw et al. (2021) combine these two components into a single metric called 

Relevance:

Substituting  into :

Relation to the Hat Matrix
The relevance decomposition is closely related to the classical hat matrix from

regression theory. The hat matrix  is defined as the matrix that maps

the vector of observed outcomes  to the vector of fitted values :

Here  is the design matrix whose rows are 

 (augmented with a leading 1 for the intercept). The

element  determines how much the outcome of observation  contributes to

the fitted value at observation . For an out-of-sample prediction at , the same

logic applies: , where 

 is the weight that observation  receives. The name “hat

matrix” comes from the fact that it puts the hat on .

We can derive the hat matrix weights directly from our existing equations.

Starting from , we substitute  and expand:



In  we write  and substitute . In  we

distribute the product and pull  out of the second sum. In  we use 

, which eliminates the last term. In  we

collect both sums into a single sum over .

Equation  reveals the structural similarity to the Nadaraya-Watson kernel

regression. In both cases, the prediction is simply a weighted sum of past

outcomes. The difference lies in how the weights  are constructed. Reading

off the coefficient of  in , the hat matrix weight is:

The first part, , is a uniform contribution: every observation participates

equally in the sample mean. The second part is the inner product ,

scaled by , which tilts the weight toward or away from observation 

depending on the geometric relationship between  and .

How does the relevance  relate to the inner product ? Let us

expand  explicitly:



In  we expand  and use the symmetry of . In 

 the  terms cancel.

Relevance and the inner product  differ by the residual term 

. This scalar depends on the current conditions  but not on the

summation index . In the prediction , it is multiplied by 

 and therefore vanishes. The hat matrix weight and

relevance are thus related by:

In  we substitute  solved for the inner product: 

. In  we collect the terms that do not

depend on  into the constant .

The term  depends only on the current conditions  and acts as a uniform

baseline for every observation. It combines the  from the sample mean with a

correction that accounts for how far  lies from the historical centre. The

observation-specific part of  is proportional to relevance alone.

This means the hat matrix and the relevance representation agree on the 

prediction (both yield ), and the per-observation variation in the hat matrix

weights is governed entirely by . The relevance decomposition thus

provides a geometric interpretation of what the hat matrix encodes: similarity to

the current conditions and informativeness of the historical observation.

What Equation  Reveals
Equation  is an interesting rewriting of the linear regression prediction 

. It produces the same number for any dataset and any . But it

reveals the mechanics that the coefficient-based formula conceals.

The prediction is anchored at the historical average  and then adjusted by a

weighted sum of past outcome deviations . The weight on each

historical observation  is its relevance , which combines two

Mahalanobis-distance-based quantities: how similar  is to the current

conditions , and how informative  was to begin with. As  shows,



relevance is the observation-varying component of the hat matrix weight; the hat

matrix and the relevance representation describe the same linear combination of

outcomes from two complementary perspectives.

Observations with positive relevance pull the prediction toward their outcomes

in the natural way. Observations with negative relevance, however, contribute

too, and they contribute in reverse. The regression uses the outcome of a

dissimilar, uninformative period and assumes that the opposite will occur. It

treats this inversion as equally valuable as the direct extrapolation from relevant

periods. However, when the data contains regime shifts, the outcomes of an

irrelevant period carry no valuable information about the current one. Inverting

them is expected to worsen the forecast.

Equation  therefore sets the stage for a natural generalization. If the use of

negatively relevant observations is problematic, the remedy is to simply exclude

them: restrict the complete set of  observations to a partial subset of 

with  (  is a relevance threshold, for instance ). This is what

Kinlaw et al. (2021) call Partial Sample Regression.
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