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The book Asset Allocation: From Theory to Practice and Beyond by Kinlaw et
al. (2021) is one of my favorites as it gets a few myths about mean variance
optimization right, which are constantly parroted, even in academic papers to
motivate some fancy new method as solution. It also provides useful solutions to
a portfolio manager’s or allocator’s practical questio like when to rebalance.

In chapter 13 on Forecasting the authors introduce a method called partial
sample regression / relevance-based prediction, which provides an interesting
perspective on a linear regression’s prediction and generalizes it into a direction
akin to the Nadaraya-Watson kernel regression.

Linear Regression

Say we are in a time-series setting with IV past observations of input variables
x; € R™X and a corresponding output variable ,,; € R. Now, at t > i, we get
realizations of x; and are asked to predict ;.

What’s the prediction of a linear regression? We start with the general form and
rewrite it in terms of de-meaned quantities. In the following, 8 € R(K+Dx1 jg
the full coefficient vector including the intercept and

B = (B, B, ..,0k) € REX! s the vector of slope coefficients only.

Yer1 = (1, x¢)B (1)
= XtB + Bo (2)
= %0+ (7~ xP) (3)
= (x—X)B+7 (4)
=%,0+7 (5)

In (2) we separate the intercept 3y € R from the slope coefficients, noting that
(1, x,)8 = By + x¢B. In (3) we substitute the least squares expression for the

intercept, 5y = § — %3. In (4) we collect the terms that multiply 3. In (5) we

define X, = x, — X € R™¥ as the de-meaned current observation. The sample
means are:
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Tedious Algebra

The reason I reformulated the linear regression’s prediction a bit is to set the
stage for further reformulations. Equation (5) shows that the prediction is the
sample mean of the outcome plus a correction term. To work with the correction
term in isolation, we subtract ¢ from both sides of (5):

!

th+1 =1 — Y= tB (6)

Now we substitute the least squares estimator
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B= (Zizl XQXz‘) (Zi:l ngi-l—l) nto (6) and rearrange:
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In (7) we divide both the matrix in the inverse and the vector on the right by N.
This is permissible because % cancels between numerator and denominator. In
(8) we replace % with ﬁ in both factors, which again cancels, but ﬁ is the
conventional normalisation for sample covariance matrices. In (9) we recognise
the sample covariance matrix @ = 1 SN | %/%; € RF*¥ . In (10) we pull

%,Q ! inside the sum, since it does not depend on the summation index i.

Equation (10) is already revealing: the de-meaned prediction is a weighted sum
of de-meaned outcomes, where the weight on observation ¢ is the inner product
%, Q7 '%,. But we can go further by decomposing this inner product into
geometrically interpretable pieces.

Because ;11 = y;+1 — ¥ is de-meaned, its sum vanishes: Zf\i 1 Ui+1 = 0. Any
constant multiplied by this sum is therefore zero. In particular, %itﬂ‘lig isa
scalar that does not depend on ¢. Subtracting it inside the sum does not change
the result:
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Yi+1 = N_1 thﬂ 1X2 Yi+1 (11)
i=1
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N
=¥ 3 (xtn % — Rl xt) Jiv1 (13)

(11) repeats (10). In (12) we subtract a term that equals zero. In (13) we absorb
the constant into the sum.

We now want to replace the bilinear form %,Q2~'%/ inside (13) with something
more interpretable. Since Q7! is symmetric and positive definite,

(a,b)g-1 = aQ~'b’ defines an inner product, and ||a||?,-, = aQ2~ a’ its
induced (squared) norm. Every inner product satisfies the polarisation identity,
which we verify by direct expansion:

1 1
§XZQ X + XtQ Xt - 5(}21 - it)ﬂil(ii - it)' (14)
1 1
- 5)21-!2_ 1%+ §)~<tﬂ_ % — 3 (XlQ % —%Q7'% - x,Q7'%, + %071 )
(15)
1 1 1 1 1 1
— 55(1-9_15(; + iitﬂ‘lig - 5@9—1&; + §>~<i9—15<; + §§<t9—1§<; - §5<t9—1~'
(16)
1 S -1/ 1 S -1/
= —XiQ X, + §xtﬂ X; (17)
= xtQ % (18)

In (15) we expand the quadratic form (%; — %,)Q ! (%; — %;)". In (16) we
distribute the —1. In (17) the squared-norm terms cancel pairwise: +1%,€2~'%;
with —1%,Q7'%}, and +1%,227'%} with —1%,Q7'%]. In (18) we use the
symmetry of Q !, which implies %, '%, = %,Q'%/.

Reading (18) from right to left gives us the decomposition we need:

1 1
itﬂ X = EXlQ X + §Xtﬂ Xt — 5(5(1 — it)Q_l(f(i — it)/ (19)
This is the matrix-weighted analogue of the scalar identity

ab = 1(a® + b? — (a — b)?). We substitute (19) into (13):



N
x 1 1. 1. . _
Yl = N7 Z (Xtﬂ %) — §XtQ xt) Tit1 (20)
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(21)
1 L/ 1
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(20) repeats (13). In (21) we replace %, '%} using (19). In (22) the terms
+1%,Q7'x] from (19) and —1%,Q "%} from (20) cancel.

We add 7 to both sides of (22) to recover the actual prediction. Since
X; = X; — X, we also restore the original (un-centered) notation inside the
quadratic forms, noting that %;Q7'%} = (x; — %x)Q ' (x; — %) and

()N(Z — }Zt) = (Xi — Xt):

N
R _ 1 1 _ 1 — 1 -1
Yep1 =Y+ N_1 ;1 |:(§(Xz - ) (x — %) — §(Xz — %) (x; — Xt)/>

(23)

Predictor Space Geometry

Let’s inspect the two quadratic forms in (23). Both are instances of the
Mahalanobis distance, a distance measure that accounts for the variance of and
covariance between the input variables through the inverse covariance matrix
Q~'. Where the ordinary Euclidean distance treats every direction in predictor
space equally, the Mahalanobis distance stretches directions of low variance and
compresses directions of high variance, effectively standardizing the
measurement. In the special case €2 = I (uncorrelated variables with unit
variance), the Mahalanobis distance reduces to the Euclidean distance.

The first term, 1(x; — X)Q ' (x; — %)/, is (half) the squared Mahalanobis
distance of observation ¢ from the historical average. It measures how unusual
this observation was relative to typical conditions. Kinlaw et al. call this quantity
Informativeness /(x;): observations far from the mean are more likely to carry
real event-driven information, while near-average observations are more likely

to be noise.

The second term, 1(x; — x;)Q " (x; — x;)’, is (half) the squared Mahalanobis
distance between observation ¢ and the current conditions x;. Its negative,
which enters with a minus sign, is what Kinlaw et al. call Similarity S(x;, x;):



observations close to the current situation are similar, and the negative
Mahalanobis distance is largest (closest to zero) for observations that resemble
the present.

With these definitions in hand, we reorder the terms in (23) and label them:

N
1 1 1
Jer =Y+ 5y ; —§(Xi —x) Q7 (% — %)+ §(Xz‘ - %) (x; — %)

(24)

Kinlaw et al. (2021) combine these two components into a single metric called
Relevance:

R(xi,x¢) = S(x4,%¢) + 1(x;) (25)

Substituting (25) into (24):
L X
Y1 =Y+ N_1 Z [R(xi, %) (Yie1 — J)] (26)
=1

Relation to the Hat Matrix

The relevance decomposition is closely related to the classical hat matrix from
regression theory. The hat matrix H € RY*¥ is defined as the matrix that maps
the vector of observed outcomes y € R¥ to the vector of fitted values y € R":

y = Hy, H = X(X'X)"'X (27)

Here X € RVX(K+1) js the design matrix whose rows are

x! = (1, x;) € R+ (augmented with a leading 1 for the intercept). The
element H;; determines how much the outcome of observation ¢ contributes to
the fitted value at observation j. For an out-of-sample prediction at x;, the same
logic applies: ;11 = x;(X'X)"'X'y = 3°¥ | hyi yir1, where

hy = x;(X'X) "%} is the weight that observation 7 receives. The name “hat

matrix” comes from the fact that it puts the hat on y.

We can derive the hat matrix weights directly from our existing equations.
Starting from (10), we substitute ;.1 = y;11 — ¥ and expand:
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In (29) we write § = & > y;41 and substitute §;+1 = ;11 — §. In (30) we
distribute the product and pull 3 out of the second sum. In (31) we use
SV % =37 (x; — ) = 0, which eliminates the last term. In (32) we
collect both sums into a single sum over ;..

Equation (33) reveals the structural similarity to the Nadaraya-Watson kernel
regression. In both cases, the prediction is simply a weighted sum of past
outcomes. The difference lies in how the weights h;; are constructed. Reading
off the coefficient of y;,; in (33), the hat matrix weight is:

1 1
hti = N + N — 1XtQ 1X; (34)
The first part, N , is a uniform contribution: every observation participates

equally in the sample mean. The second part is the inner product %, '%,
scaled by <, which tilts the weight toward or away from observation ;

depending on the geometric relationship between x; and x;.

How does the relevance R(x;, x,) relate to the inner product %,£2~'%/? Let us
expand S + [ explicitly:

R(x;,x;) = S(x,%¢) + I(x;) (35)
1 1
= —i(XZ — Xt>Q_1(X - }N(t)/ + 55(@9 1X; (36)
1 1
= ——)~(ZQ + X Q X, — itﬂ_lxt + 55(19 IX; (37)



In (37) we expand (X; — %;)2 ' (X; — %;)" and use the symmetry of Q7 '. In
(38) the £1%,Q7'X] terms cancel.

Relevance and the inner product %, %/ differ by the residual term
—1%,Q7'x]. This scalar depends on the current conditions x; but not on the
summation index . In the prediction (26), it is multiplied by

SN (yiz1 — §) = 0 and therefore vanishes. The hat matrix weight and
relevance are thus related by:

1

_ 1 e -1/
1 1 1
1 xQ7'%  R(x,x)

_ 1 41
N aN—1) TN-1 (41)

t

In (40) we substitute (38) solved for the inner product:
Q7% = R(x;,x;) + 1%,£27'%}. In (41) we collect the terms that do not

depend on ¢ into the constant c;.

The term ¢; depends only on the current conditions x; and acts as a uniform
baseline for every observation. It combines the < from the sample mean with a
correction that accounts for how far x; lies from the historical centre. The
observation-specific part of hy; is proportional to relevance alone.

This means the hat matrix and the relevance representation agree on the
prediction (both yield ¢;1), and the per-observation variation in the hat matrix
weights is governed entirely by R(x;,x;). The relevance decomposition thus
provides a geometric interpretation of what the hat matrix encodes: similarity to
the current conditions and informativeness of the historical observation.

What Equation (26) Reveals

Equation (26) is an interesting rewriting of the linear regression prediction
Ui+1 = (1, x¢)3. It produces the same number for any dataset and any x;. But it
reveals the mechanics that the coefficient-based formula conceals.

The prediction is anchored at the historical average 4 and then adjusted by a
weighted sum of past outcome deviations y;; — . The weight on each
historical observation i is its relevance R(x;, x;), which combines two
Mahalanobis-distance-based quantities: how similar x; is to the current
conditions x;, and how informative x; was to begin with. As (41) shows,



relevance is the observation-varying component of the hat matrix weight; the hat
matrix and the relevance representation describe the same linear combination of

outcomes from two complementary perspectives.

Observations with positive relevance pull the prediction toward their outcomes
in the natural way. Observations with negative relevance, however, contribute
too, and they contribute in reverse. The regression uses the outcome of a
dissimilar, uninformative period and assumes that the opposite will occur. It
treats this inversion as equally valuable as the direct extrapolation from relevant
periods. However, when the data contains regime shifts, the outcomes of an
irrelevant period carry no valuable information about the current one. Inverting
them is expected to worsen the forecast.

Equation (26) therefore sets the stage for a natural generalization. If the use of
negatively relevant observations is problematic, the remedy is to simply exclude
them: restrict the complete set of N observations to a partial subset of n < N
with R(x;,x;) > R* (R* is a relevance threshold, for instance 0). This is what
Kinlaw et al. (2021) call Partial Sample Regression.
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