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Introduction

Cancer is not a single moment or a sudden mistake. It is a biological process that
unfolds over time. Tumors grow over time, pressing into nearby tissue and
drawing resources away from healthy cells, all while slipping past the immune
system meant to stop them. As treatments are introduced, cancer does not simply
disappear. Some cells survive and change, finding ways to resist what once
worked against them. This is why cancer can return, even after aggressive
therapy. Understanding cancer as an evolving process, rather than a single event,
helps explain both the difficulty of treating it and the need for new approaches.

Traditionally, doctors have relied on imaging, biopsies, and population-level
clinical trials to decide how and when to treat cancer. While these tools are
essential, they often provide only snapshots of a much more complex and
constantly changing system. This is where mathematics becomes more valuable.
By combining biological knowledge with mathematical models, researchers can
simulate how tumors are likely to grow, respond to therapy, and develop
resistance, before those outcomes occur in a patient’s body.

The Math Behind It

The goal of mathematical oncology, which applies mathematics and computer
modeling to study how tumors grow and respond to therapy, is not to replace
biology or clinical judgment, but to strengthen them. When biological
mechanisms are translated into equations, doctors gain a way to test treatment
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strategies safely, personalize care, and avoid unnecessary harm. In order to
mathematically model tumors, they are treated as a dynamic system whose
behavior can be described and predicted using equations. Researchers use
mathematics rather than observation or trial-and-error in order to formalize how
tumors are able to respond to drugs and evolve over time. This allows treatment
strategies to be tested computationally and for people to make predictions that
would be impractical or unethical to directly test on patients.

The foundation of math modeling for tumors and their growth is in differential
equations, which describes how a quantity changes over time. In the context of
tumor growth, a differential equation models how fast a tumor grows at any
given time based on its current size. One example is the exponential growth
model, which assumes the growth rate is directly proportional to the size of the
tumor and thus predicts unlimited growth. However, simple exponential models
fail because they ignore biological limits, so these more realistic models are
used. Logistic growth equations capture the slowing of tumor growth as
resources become scarce, while Gompertz models describe rapid early growth
followed by saturation over time. These equations contain parameters such as
growth rate and carrying capacity that are estimated from data and can forecast
future tumor behavior with surprising accuracy.

Tumors’ drug resistance can be modeled using evolutionary and stochastic
mathematics, where stochastic is the explicit inclusion of randomness into the
model. Here, tumors are treated as competing populations of sensitive and
resistant cells whose proportions can change under selective pressure from
treatment. Stochastic models show that even very small resistant subpopulations
can survive under different therapies and allow researchers to predict when and
how resistance will emerge. Adaptive therapy naturally follows from this
mathematical framework, in which models show that a controlled tumor
population can suppress resistant cells by preserving competition. This is
important because it enables mathematically optimized strategies that can
prolong treatment effectiveness and ultimately improve patient outcomes.

Finally, mathematical models can become clinically useful when personalized.
For example, patient-specific imaging and biopsy data are used to estimate the
parameters in the math models through optimization and statistical inference.
Optimization finds the parameter values that best fit the observed patient data,
and statistical inference uses the data to quantify uncertainty and make
conclusions about the model’s predictions. Once calibrated, these individualized
models can predict tumor growth trajectories, responses to treatments, and
timelines for resistance in a specific patient, ultimately transforming cancer
treatment from a generalized protocol into a personalized system through
mathematical modeling.
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Behind every equation in tumor modeling is a biological process. Logistic and
Gompertz growth curves reflect the fact that cancer cells depend on oxygen,
nutrients, and physical space. As a tumor grows, its inner regions often become
starved of oxygen, creating hypoxic cores that slow growth but also make cancer
cells harder to kill. These biological constraints explain why tumors rarely grow
indefinitely at the same rate.



Drug resistance emerges not because cancer cells “decide” to resist treatment,
but because therapy creates an environment where only the most adaptable cells
survive. Resistant cells may already exist in small numbers before treatment
begins. When sensitive cells are killed, resistant ones are left behind to expand.
Mathematical models capture this, which in turn helps researchers understand
why aggressive treatment can sometimes accelerate resistance rather than
prevent it.

The immune system adds another layer of complexity. Tumors constantly
interact with immune cells such as T cells. Sometimes these interactions activate
the immune response, and other times they suppress it. Feedback loops
involving cytokines can strengthen immune activity or cause it to collapse
altogether. Mathematical models based on predator—prey biology help explain
immune exhaustion and why immunotherapies such as checkpoint inhibitors
work well for some patients but not for others. In these models, immune cells,
such as T cells are treated as “predators” that attack cancer cells, while tumor
cells act as the “prey.” Initially, immune cells may successfully suppress tumor
growth, but prolonged exposure to cancer can overstimulate them, causing
immune exhaustion, a state in which immune cells lose their ability to
effectively kill cancer cells. These models help explain why immunotherapies
are not universally effective: checkpoint inhibitors work by reactivating
exhausted immune cells, but if immune suppression is too severe or if tumors
evolve ways to avoid immune detection, the treatment may fail.

Spatial models add another important layer by accounting for the physical
structure of tumors. Unlike simpler models that assume tumors are uniform,
spatial models describe how cancer cells, blood vessels, oxygen, and drugs are
unevenly distributed throughout a tumor. Because some regions have poor blood
supply, drugs may not reach all areas equally, allowing cancer cells in protected
regions to survive treatment. This uneven drug exposure helps explain why
combination therapies that are using drugs to penetrate tumors in different ways
or target different regions are often more effective than single-drug treatments.

The Impact in Clinical Terms

However, the true power of mathematical modeling lies in personalization.
When a patient’s imaging data, biopsy results, and treatment responses are used
to calibrate a model, predictions become patient-specific rather than theoretical.
Doctors can estimate how fast a tumor is likely to grow, when resistance may
appear, and how different treatment schedules might change the outcome.

Importantly, these models support adaptive therapy, an approach already being
tested in clinical trials. Instead of trying to eliminate every cancer cell at once,
adaptive therapy uses biologically informed dosing to keep resistant populations



under control. This strategy is grounded in both evolutionary biology and
mathematics, showing how interdisciplinary approaches can extend patient

survival.

Conclusion

Cancer is biological, but it is also predictable in ways that biology alone cannot
always reveal. Mathematical models turn complex cellular behaviors into tools
that help doctors think ahead rather than react after the fact. By combining tumor
biology, immunity, and patient-specific data, mathematics allows researchers to
explore treatment strategies safely and efficiently.

As these models continue to improve, they offer a future where cancer treatment
is not just reactive, but anticipatory and designed around how a tumor is likely to
behave, not just how it looks today. In that sense, mathematics does not remove
the human element from cancer care; it strengthens it by helping treatments
become smarter, safer, and more personal.
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