Cool Problem

Limitless <+ 7 Jan 2026

Cool Problem

During the summer, I came across a specific flavor of problem that I could not
solve initially, but with some help, I eventually became comfortable with it. Fun
fact: this question was also asked in a final-round interview at Squarepoint.

What made this problem particularly interesting to me was that it looked simple
on the surface, but quickly forced you to think carefully about stopping times,
conditioning, and how to structure expectations. At first glance, the most natural
instinct is to brute force it—and that’s exactly where I started.

Problem Statement

Let X1, X2, X3, -+ be i.i.d. U[0, 1] random variables and let
N=min{n: X1+ Xo+ -+ X, >z}, z€][0,1]

Find E(N).

In words, we keep drawing uniform random variables until their cumulative sum
exceeds x, and we want to know how many draws this takes on average.

First Approach: Brute Force via Tail
Probabilities

Since N is a discrete random variable taking positive integer values, a natural
starting point is to express its expectation in terms of tail probabilities:

E[N] =322 P(N = n).

To make progress, we need to understand what the event N > n actually means.
Observing the definition of N, we see that

N >n < Z?:llXin.


https://functor.network/user/3347/entry/1592
https://functor.network/user/3347/entry/1592
https://functor.network/user/3347/entry/1592
https://functor.network/user/3347

So the problem reduces to computing probabilities involving partial sums of
uniform random variables.

Define the event
A, = (T, X <a}.

Our goal is to compute P(A,,) in a form that is easy to work with.

Recursive Formulation
We can write this probability as a volume of a region in R™:
P(A,) = f"'fAn ldx; - - - dxy,.

Let f,(z) = P(A,). Rather than computing this integral directly for each n, we
look for a recursive structure.

Conditioning on the last variable X,, = z,,, the event A,, requires
Z?;ll X, <z —ax,.

This gives the recursion

fal@) = J§ far(z — 20)day.

To anchor the recursion, note that since X; ~ U|0, 1],

fi(z) =P(X; < z) ==
Using this,

fola) = [ (@ — xo)dzy = 2.

At this point, a clear pattern emerges. By induction,

Computing E(N)

We can now return to the expression we started with. Using the fact that
P(N>1) =1,

E[N] =1+3202, fal2).

Substituting the closed-form expression for f,(z),

EN =1+ %

n=1 n!"*

This is nothing but the Taylor expansion of e*, and hence



E(N) =e".

While this approach works nicely, it does rely on explicitly understanding the
geometry of these probability regions. Fortunately, there is a cleaner way.

Second Approach: Conditioning on
the First Variable

Instead of conditioning on the last variable, we now condition on the first. This
perspective turns out to be much more powerful.

Using the law of total expectation,
E[N] = E[E[N | Xu]].

The intuition is simple: if the very first draw already exceeds z, then the process
stops immediately.

Define
f#) =E(N[X:=t), g(z)=E(N).
Since X; ~ U[0, 1],

g(w) = [y f(t)dt.

Case Analysis

There are two cases to consider:

eIft > x,then N = 1.
* If ¢t < x, then after drawing ¢, we need to exceed = — ¢ using fresh
uniform variables.

In the second case,

N=min{n: Xo+ -+ X, >z —t}+1=gx—1t)+ 1
Putting everything together,

g(x) = [T(1+ gz —t)dt + [} 1dt = 1+ [ g(t)dt.
Differentiating both sides gives

g'(x) = g(x).

With the boundary condition g(0) = 1, we again obtain



g(x) = e”.

This method avoids multidimensional integrals entirely and already hints at how
to extend the result.

Extension to z € |1, 2]

Now suppose x € [1,2]. The same conditioning idea still applies, but the
structure of the recursion changes slightly because the remaining threshold x — ¢
can now lie either in [0, 1] orin [1, 2].

Define

() =E(N | X, =t), h(z)=E(N).
As before,

h(z) = [; I(t)dt.

We analyze [(t) by splitting into cases depending on the value of z — ¢.

Case Analysis

«Ifx—te(1,2),ie t € (0, — 1), then after observing X; = ¢, the
remaining problem is still in the regime [1, 2]. Hence,

N =h(x—1t)+ 1.

«Ifx —t€(0,1),ie. t € (x—1,1), then the remaining problem falls back
into the original case. From the previous section,

N=glx—t)+1=e""+1.

Integral Equation for A(x)
Combining both cases, we obtain

h(z) = [T+ h(z — t)dt + 1 (1 + e ).
We now simplify each term.

First,

[t dt =2 -1,

and by a change of variables,



[ h(z —t)dt = [ h(u)du.
Next,
1
[, ldt=2—u=,
and
f;_l e tdt = e f:_l e~ldt =e— e L

Putting everything together,

h(z) =1+ [ h(t)dt +e—e" .

Solving the ODE
Differentiating both sides with respect to x gives
B (z) = h(z) —e” L.

This is a first-order linear ODE. Using the boundary condition h(1) = g(1) = e,
we solve to obtain

hz) =e* (14— %)

In particular, at z = 2, h(2) = ¢ —e.

Expected Overshoot Sum

We now switch gears and look at a closely related quantity.
Define

Sy =X1+ Xo+ - + X,

the sum at the stopping time. Our goal is to compute E(Sy).
Let

k(x) =E(Sn), q(t)=E(Sy| X1 =1).

As before,

k(z) = [, q(t)dt.

Case Analysis

* If ¢t > x, then the process stops immediately and Sy = t.
«If t <z, then Sy =t + k(z —1).



Thus,

k() = [t + k(z —t)dt + [ tdt = L+ [T k(t)dt,
Differentiating,

E'(z) = k(z).

Using k(0) = 0.5, we get

Final Insight

Notice something elegant:

E(Sy) = e* = E(N)E(X)).

1
2

This is exactly what Wald’s lemma predicts, since NV is a stopping time.

Closing Thought

The key lesson here is that conditioning—when done thoughtfully—can turn a
high-dimensional integration problem into a one-line differential equation.

The next time you see a chain of uniform random variables, try conditioning
early. It will almost always save you from visualizing multidimensional
simplices.

Pretty cool, right?



	Cool Problem
	Cool Problem
	Problem Statement
	First Approach: Brute Force via Tail Probabilities
	Recursive Formulation
	Computing

	Second Approach: Conditioning on the First Variable
	Case Analysis

	Extension to
	Case Analysis
	Integral Equation for
	Solving the ODE

	Expected Overshoot Sum
	Case Analysis

	Final Insight
	Closing Thought



