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This post continues my series on favorite theorems of the 21st century. For an
overview of the categories and my previous selections, see this earlier post.

In the category Between the Centuries—that is, theorems proved in the late 20th
century but published in the early 21st century—my favorite result in Geometry
and Topology, and indeed across all areas of mathematics, is the proof of
Kepler’s conjecture on the densest packing of congruent balls in R3.

For a formal definition of packing (upper) density and its extension to higher
dimensions, see this earlier post. Intuitively, however, the problem is easy to
state: how can we arrange non-overlapping congruent balls in three-dimensional
space so that they occupy as large a proportion of space as possible?

Two arrangements—called the cubic close packing and the hexagonal close
packing—have been known for centuries and both achieve the same density

s
ﬁ ~ 0.74048.
One way to visualize their construction is to begin with balls whose centers lie
on a cubic grid, then rearrange each horizontal layer according to the optimal
hexagonal packing of circles in the plane. By shifting successive layers and
bringing them closer together, one obtains a tightly interlocking three-
dimensional structure.

In 1611, Johannes Kepler conjectured that no packing of congruent balls in R3
can exceed this density. In 1831, Gauss proved the conjecture for the special
case of lattice packings, where the centers of the balls form a regular lattice. The
general case, however, remained stubbornly open.

The conjecture gained further prominence in 1900, when Hilbert included it in
his famous list of 23 unsolved problems (as part of the 18th problem). In 1953,
Laszl6 Fejes Toth reduced the problem to a finite—but astronomically large—
collection of cases requiring verification. Building on this strategy and
introducing extensive computational methods, Thomas Hales (T. C. Hales 2005)
finally completed a proof more than four centuries after Kepler’s original
conjecture.
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Theorem 1 No packing of congruent balls in R3 has upper density greater

than
T
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The structure of Hales’s proof is striking. He first showed that any hypothetical
counterexample would imply the existence of a finite configuration of spheres
satisfying certain geometric constraints. These constraints were then translated
into systems of inequalities, which were subsequently relaxed into linear
inequalities suitable for analysis via linear programming.

Although the number of resulting systems was finite, it was so vast that
verifying them by hand was completely infeasible. Computer solvers were
therefore used to show that every such system is inconsistent, ruling out all
possible counterexamples.

Because of the unprecedented scale and complexity of the computation,
concerns naturally arose about the reliability of the proof. In response, Hales
launched the Flyspeck Project, whose goal was to formally verify the entire
argument using proof-assistant software, reducing every step back to the axioms
of mathematics. This monumental effort was completed in 2015 (Thomas C.
Hales et al. 2017), providing essentially complete certainty in the correctness of
the proof.

Beyond settling a 400-year-old conjecture, the proof of Kepler’s conjecture
stands as a landmark in the use of computers in mathematics—both as
exploratory tools and as fully rigorous proof verifiers—reshaping how we think
about the nature of mathematical certainty in the 21st century.
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