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This post continues my series on favorite theorems of the 21st century. For an

overview of the categories and my previous selections, see this earlier post.

In the category Between the Centuries—that is, theorems proved in the late 20th

century but published in the early 21st century—my favorite result in Geometry

and Topology, and indeed across all areas of mathematics, is the proof of 

Kepler’s conjecture on the densest packing of congruent balls in .

For a formal definition of packing (upper) density and its extension to higher

dimensions, see this earlier post. Intuitively, however, the problem is easy to

state: how can we arrange non-overlapping congruent balls in three-dimensional

space so that they occupy as large a proportion of space as possible?

Two arrangements—called the cubic close packing and the hexagonal close

packing—have been known for centuries and both achieve the same density 

One way to visualize their construction is to begin with balls whose centers lie

on a cubic grid, then rearrange each horizontal layer according to the optimal

hexagonal packing of circles in the plane. By shifting successive layers and

bringing them closer together, one obtains a tightly interlocking three-

dimensional structure.

In 1611, Johannes Kepler conjectured that no packing of congruent balls in 

can exceed this density. In 1831, Gauss proved the conjecture for the special

case of lattice packings, where the centers of the balls form a regular lattice. The

general case, however, remained stubbornly open.

The conjecture gained further prominence in 1900, when Hilbert included it in

his famous list of 23 unsolved problems (as part of the 18th problem). In 1953,

László Fejes Tóth reduced the problem to a finite—but astronomically large—

collection of cases requiring verification. Building on this strategy and

introducing extensive computational methods, Thomas Hales (T. C. Hales 2005)

finally completed a proof more than four centuries after Kepler’s original

conjecture.
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The structure of Hales’s proof is striking. He first showed that any hypothetical

counterexample would imply the existence of a finite configuration of spheres

satisfying certain geometric constraints. These constraints were then translated

into systems of inequalities, which were subsequently relaxed into linear

inequalities suitable for analysis via linear programming.

Although the number of resulting systems was finite, it was so vast that

verifying them by hand was completely infeasible. Computer solvers were

therefore used to show that every such system is inconsistent, ruling out all

possible counterexamples.

Because of the unprecedented scale and complexity of the computation,

concerns naturally arose about the reliability of the proof. In response, Hales

launched the Flyspeck Project, whose goal was to formally verify the entire

argument using proof-assistant software, reducing every step back to the axioms

of mathematics. This monumental effort was completed in 2015 (Thomas C.

Hales et al. 2017), providing essentially complete certainty in the correctness of

the proof.

Beyond settling a 400-year-old conjecture, the proof of Kepler’s conjecture

stands as a landmark in the use of computers in mathematics—both as

exploratory tools and as fully rigorous proof verifiers—reshaping how we think

about the nature of mathematical certainty in the 21st century.
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