Squaring the circle with Jordan measurable
pieces
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The January 2026 issue of Advances in Mathematics contains a striking paper by
Mathé, Noel, and Pikhurko (Mathé, Noel, and Pikhurko 2026), showing that a
circle can be partitioned into finitely many Jordan measurable pieces which can
then be rearranged, using only translations, to form a square of the same area.
This result represents the latest milestone in a century-long story at the
intersection of geometry, measure theory, and the foundations of mathematics.

The axiom of choice is one of the cornerstones of modern set theory. It asserts
that given any collection S of pairwise disjoint nonempty sets, one can select
exactly one element from each set. While this principle may appear self-evident,
it has famously counterintuitive consequences. One of the most celebrated is the
Banach—Tarski paradox: for any d > 3, any two bounded subsets of R? with
nonempty interiors are equidecomposable. That is, one can partition one set into
finitely many pieces and, using only translations and rotations, reassemble them
to obtain the other set. In particular, a single unit ball in R3 can be decomposed
and rearranged to form two identical unit balls.

For decades, such decompositions necessarily relied on highly non-measurable
pieces. A major breakthrough came in 2022, when Grabowski, Mathé, and
Pikhurko (Grabowski, Mathé, and Pikhurko 2022) proved that if the sets
involved are measurable and have the same measure, then the pieces can also be
chosen to be measurable.

In contrast to the higher-dimensional situation, Tarski showed that the Banach—
Tarski phenomenon cannot occur in the plane. If a measurable set A C R? is
partitioned into (possibly non-measurable) pieces and rearranged by translations
and rotations to form another measurable set B, then A and B must have the
same area. This led Tarski, in 1925, to ask a natural and deceptively simple
question: are any two planar sets of equal area equidecomposable in this way?
In particular, can a disk be rearranged to form a square of the same area? This
became known as Tarski’s circle squaring problem.
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In 1990, Laczkovich (Laczkovich 1990) answered this question affirmatively.
He showed that a disk can indeed be partitioned into finitely many pieces which
can be rearranged—using translations alone, without rotations—to form a
square. However, the pieces arising in his construction are extremely intricate
and, crucially, non-measurable. Laczkovich therefore left open the question of
whether such a decomposition could be achieved using measurable pieces.

This problem was resolved in 2017 by Grabowski, Mathé, and Pikhurko
(Grabowski, Mathé, and Pikhurko 2017), who showed that a disk and a square of
the same area are equidecomposable by translations with Lebesgue measurable
parts. Formally, two sets A, B C IR? are said to be equidecomposable by
translations if there exist partitions

A=A U---UA,, B=B;U---UB,,

such that B; = A; + v; for some vectors vy, . .., v, € R2.If, moreover, all A,
(and hence all B;) are Lebesgue measurable, then the equidecomposition is said
to be with measurable parts.

At this point, reactions to the solution of Tarski’s problem begin to diverge.
Some find the result astonishing; others remark that if the axiom of choice can
turn one ball into two, then transforming a disk into a square seems
comparatively modest. Indeed, the proof in (Grabowski, Mathé, and Pikhurko
2017) makes essential use of the axiom of choice, albeit restricted to a null set,
and the measurable pieces involved are still far from simple. In particular, they
are not Borel sets—those obtained from open sets by countable unions,
intersections, and set differences.

Remarkably, also in 2017, Marks and Unger (Marks and Unger 2017)
strengthened this result by proving that a disk and a square of the same area are
equidecomposable by translations using Borel pieces. Even more strikingly, their
proof avoids the axiom of choice altogether. Results of this kind are said to be
constructive. The existence of such a constructive solution answered a question
posed by Wagon in 1985.

Despite this progress, the pieces in the Marks—Unger construction remain quite
complicated from a geometric perspective. In particular, they lack a natural
regularity property known as Jordan measurability. A bounded set X C R¢ is
Jordan measurable if its boundary has Lebesgue measure zero. Intuitively, this
means that X can be well approximated by a finite grid: when a square is
subdivided into an n x n grid, the boundary of X intersects only a negligible



fraction of the small squares, so almost all squares lie entirely inside or outside
X. As a result, Jordan measurable sets admit finite approximations to arbitrary
precision.

This brings us back to the 2026 work of Mathé, Noel, and Pikhurko (Mathé,
Noel, and Pikhurko 2026). They proved that a disk and a square of the same area
are equidecomposable by translations in such a way that every piece is Jordan
measurable, and at the same time Borel. Their result follows from a far-reaching
general theorem: for any d > 1, if A and B are bounded subsets of R¢ with
equal positive measure and boundaries of upper Minkowski dimension strictly
less than d, then A and B are equidecomposable by translations. Moreover, the
pieces can be chosen so that their boundaries also have upper Minkowski
dimension less than d, and if A and B are Borel, so are the pieces.

In a sense, this result achieves the best possible outcome. In 1963, Dubins,
Hirsch, and Karush introduced the notion of scissors congruence in the plane,
where equidecompositions are required to use pieces whose boundaries consist
of a single Jordan curve. They showed that a disk is not scissors congruent to a
square—or indeed to any convex set other than a disk itself. Thus, while perfect
geometric simplicity is unattainable, the Jordan measurable pieces constructed in
(Mathé, Noel, and Pikhurko 2026) represent the “nicest” pieces one could
reasonably hope for in the long quest to square the circle.
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