

Boaz Klartag's talk on Sphere packing

Bogdan Grechuk · 6 Jan 2026

I am pleased to invite you to the first talk in a new series of online seminars devoted to accessible presentations of some of the most significant mathematical theorems of the 21st century.

The inaugural talk will take place on **Wednesday, January 28, 2026, at 4:00 PM (UK time)**. **Prof. Boaz Klartag** (Weizmann Institute of Science, Israel) will speak on the topic of *sphere packing*.

To join the talk, just [click here](#) at the scheduled time. No registration required. For a full list of upcoming seminars, please visit the seminar webpage: <https://th21.le.ac.uk/next-talks/>.

For the announcements of other talks, as well as descriptions of other recent great math theorems, please see [the full list of my posts in this blog](#).

The Sphere Packing Problem.

What is the densest possible way to pack congruent balls in \mathbb{R}^d ? More precisely, for a center $A \in \mathbb{R}^d$ and radius $R > 0$, an *open ball* $B(A, R)$ is defined by

$$B(A, R) = \{X \in \mathbb{R}^d : |AX| < R\},$$

where $|\cdot|$ denotes the Euclidean distance. A *packing of congruent balls*, or *sphere packing*, is an (infinite) collection E of non-overlapping open balls of equal radius.

Fix a point $O \in \mathbb{R}^d$. The *upper density* of a packing E is defined as

$$\delta(E) = \limsup_{R \rightarrow \infty} \frac{|B(O, R) \cap E|}{|B(O, R)|}, \quad (1)$$

where $|\cdot|$ denotes d -dimensional volume. It can be shown that $\delta(E)$ depends only on E and not on the choice of O . If the limit in (1) exists, then $\delta(E)$ is simply called the *density* of E .

In \mathbb{R}^2 , a natural arrangement of non-overlapping circles is given by the *regular hexagonal packing*, which has density $\frac{\pi}{\sqrt{12}} = 0.9069 \dots$. In 1773, Lagrange proved that this packing is optimal among *lattice packings*, namely those packings whose centers form a lattice. Recall that a *lattice* $\Lambda \subset \mathbb{R}^d$ is a set of the form

$$\Lambda = \left\{ \sum_{i=1}^d a_i v_i \mid a_i \in \mathbb{Z} \right\},$$

where v_1, \dots, v_d is a basis of \mathbb{R}^d . In 1910, Thue gave a (partly non-rigorous) argument showing that the regular hexagonal packing is optimal among all packings in \mathbb{R}^2 . A fully rigorous proof was later provided by Tóth in 1943.

In \mathbb{R}^3 , two classical arrangements—the *cubic close packing* and the *hexagonal close packing*—achieve the same density $\frac{\pi}{3\sqrt{2}}$. In 1611, Kepler conjectured that these are the densest possible packings. This conjecture was finally confirmed by Hales in 2005 (Hales 2005).

The sphere packing problem has been completely solved only in a few other dimensions. In 2017, Viazovska (Viazovska 2017) resolved the problem in dimension $d = 8$, and shortly thereafter Cohn *et al.* (Cohn et al. 2017) did so in dimension $d = 24$. For dimensions $d \neq 1, 2, 3, 8, 24$, the determination of the optimal packing density ρ_d^* remains open.

In 2022, Cohn, de Laat, and Salmon (Cohn, Laat, and Salmon 2022) developed new methods improving the previously best known upper bounds on ρ_d^* in dimensions $4 \leq d \leq 7$ and $9 \leq d \leq 16$.

For general d , Kabatyansky and Levenshtein showed in 1978 (Kabatyanskii and Levenshtein 1978) that

$$\rho_d^* \leq 2^{(-0.599\dots + o(1))d}, \quad (2)$$

a bound that remains essentially optimal to this day, up to constant-factor improvements.

By contrast, the best known lower bounds are much weaker. In 1947, Rogers (Rogers 1947) proved that

$$\rho_d^* \geq c d 2^{-d}$$

for some universal constant $c > 0$. This bound stood for more than 75 years, apart from improvements to the constant. In 2023, Campos, Jenssen, Michelen, and Sahasrabudhe (Campos et al. 2023) improved Rogers' bound by a factor of $\log d$. More recently, in 2025, Klartag (Klartag 2025) developed a construction that beats Rogers' construction by a factor of d .

Theorem 1 *There exists a constant $c > 0$ such that, for all $d \geq 1$,*

$$\rho_d^* \geq c d^2 2^{-d}.$$

Remarkably, the construction underlying Theorem 1 is a *lattice packing*. Klartag (Klartag 2025) further speculates that, at least within the class of lattice packings, the lower bound in Theorem 1 may be essentially optimal, up to the value of the universal constant c or possibly a logarithmic correction.

References

Campos, Marcelo, Matthew Jenssen, Marcus Michelen, and Julian Sahasrabudhe. 2023. “A New Lower Bound for Sphere Packing.” *arXiv Preprint arXiv:2312.10026*.

Cohn, Henry, Abhinav Kumar, Stephen D. Miller, Danylo Radchenko, and Maryna Viazovska. 2017. “The Sphere Packing Problem in Dimension 24.” *Ann. Of Math.* 185 (3): 1017–33.

Cohn, Henry, David de Laat, and Andrew Salmon. 2022. “Three-Point Bounds for Sphere Packing.” *arXiv Preprint arXiv:2206.15373*.

Hales, T. C. 2005. “A Proof of the Kepler Conjecture.” *Ann. Of Math.* 162 (3): 1065–185.

Kabatyanskii, Grigorii Anatol’evich, and Vladimir Iosifovich Levenshtein. 1978. “On Bounds for Packings on a Sphere and in Space.” *Problemy Peredachi Informatsii* 14 (1): 3–25.

Klartag, Boaz. 2025. “Lattice Packing of Spheres in High Dimensions Using a Stochastically Evolving Ellipsoid.” *arXiv Preprint arXiv:2504.05042*.

Rogers, Claude Ambrose. 1947. “Existence Theorems in the Geometry of Numbers.” *Annals of Mathematics* 48 (4): 994–1002.

Viazovska, Maryna S. 2017. “The Sphere Packing Problem in Dimension 8.” *Ann. Of Math.* 185 (3): 991–1015.