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The just-published first 2026 issue of the Annals of Mathematics contains a
paper by Burungale and Tian (Burungale and Tian 2026) which, among other
results, establishes a striking and accessible theorem related to the classical

congruent number problem.

A positive integer n is called a congruent number if it is the area of a right
triangle with rational side lengths. Equivalently, n = %ab for some positive
rational numbers a and b such that the hypotenuse

c=Va?+b?

is also rational. Determining whether a given positive integer is congruent is
known as the congruent number problem. With a history stretching back more
than 1000 years, it is one of the oldest unsolved problems in mathematics.

There is a deep and beautiful connection between congruent numbers and elliptic

curves. If n = %ab is a congruent number, then the quantities

_nla+c) _ 2n(a+c)
give a nonzero rational solution of the equation
y? = 1° —n’r. (1)

Conversely, if (z,y) is a rational solution of (1) with y # 0, then n is the area of

a right triangle with rational side lengths
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Thus, the congruent number problem is equivalent to determining whether
equation (1) has a rational solution with y # 0. It is known that if (1) has
finitely many rational solutions, then all of them have y = 0. Hence, n is a
congruent number if and only if equation (1) has infinitely many rational
solutions.

Equation (1) is a special case of equation

y? = a® + Az + B, (2)
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where A, B € Z satisfy 443 + 27B? = (. The curve defined by (2) is called an
elliptic curve. A special case of famous Birch and Swinnerton-Dyer conjecture
predicts that (2) has finitely many rational solutions if and only if its analytic
rank is equal to 0, where analytic rank is a non-negative integer associated to
any given elliptic curve. A special case of this conjecture for family (1) thus
implies that n is a congruent number if and only if the analytic rank of (1) is

positive.

A remarkable theorem of Tunnell (Tunnell 1983) gives a completely elementary
reformulation of this analytic condition. Let ¥:(n) denote the set of integer
solutions to

2 ged(n,2)2® +1° + 822 = —
aed(n,2) 0+ 97 485 =

where gcd is the greatest common divisor. Then define
L(n) = #{(x,y,2) € X(n) : 2| 2} — #{(2,y,2) € B(n) : 21 2},

where, as usual, # A is the number of elements in set A. Tunnell (Tunnell 1983)
proved that the analytic rank of (1) is positive if and only if £(n) = 0.
Assuming the Birch and Swinnerton-Dyer conjecture, Tunnell’s work implies
that

n is a congruent number <= L(n) = 0.

Since £(n) can be computed efficiently for any given n, this would yield a
complete solution to the congruent number problem. Moreover, Tunnell proved
unconditionally that if £(n) # 0, then n is not a congruent number.

Computational data for small values of n suggest the following pattern.
* (a) Every positive integer n = 5,6, 7 (mod 8) appears to be congruent.

* (b) The set of congruent numbers n = 1,2,3 (mod 8) appears to have
density zero.

(There is no need to consider n = 0,4 (mod 8), since one may restrict attention
to square-free integers.)

In 2016, Smith (Smith 2016) made major progress on part (a) by proving that a
positive proportion of integers congruent to 5, 6, or 7 modulo 8 are congruent
numbers. In particular, a positive proportion of all positive integers are
congruent. In subsequent work (Smith 2017), Smith established part (b) in full:
the set of congruent numbers congruent to 1, 2, or 3 modulo 8 has zero natural
density.

Smith’s proof does not imply that £(n) # 0 for almost all n in the relevant
congruence classes. This was achieved by Burungale and Tian in their recent
Annals paper (Burungale and Tian 2026).



Theorem 1 Let S be the set of positive square-free integers congruent to 1,
2, or 3 modulo 8. There ezists a subset A C S of density one such that
L(n) #0 foralln € A.

Since £(n) # 0 implies that n is not a congruent number, Theorem 1 implies
Smith’s density-zero result. The converse implication is not known. Recall that
the condition £(n) # 0 is equivalent to saying that the analytic rank of (1) is
zero. A deep conjecture of Goldfeld (Goldfeld 1979), known as “even parity
Goldfeld’s conjecture” predicts that, in certain natural families of elliptic curves,
exactly 50% should have analytic rank 0. Since exactly half of all square-free
integers are congruent to 1, 2, or 3 modulo 8, Theorem 1 confirms the even
parity Goldfeld conjecture for the family of congruent number curves (1). This
is the first family of elliptic curves for which this conjecture has been proved.
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