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As announced in my previous blog post, I am beginning a series of posts
devoted to my favorite theorems of the 21st century. In the category “Between
the Centuries” in Number Theory, my personal favorite is the Modularity
Theorem.

A fundamental role in modern number theory is played by curves E of the form
y? =2° +ax + b, (1)
where a, b € Z and the discriminant
Ap = —16(4a® + 27b%)

is nonzero. The equation (1) defines a non-singular elliptic curve over Q in
Weierstrass form, or simply an elliptic curve.

Elliptic curves have proved to be extraordinarily powerful tools: they have
played a decisive role in the solution of many problems whose original
formulations bore no apparent connection to them. The most celebrated example
is the proof of Fermat’s Last Theorem.

Around 1637, Pierre de Fermat asserted—famously without proof—that for any
integer n > 3 there are no positive integers x, y, z satisfying

This claim, later known as Fermat’s Last Theorem, remained the most notorious
open problem in mathematics for more than three centuries.

In 1955, Taniyama and Shimura initiated a remarkable connection between
elliptic curves and certain analytic functions defined on the complex upper half-
plane

H:={z € C:Im(z) > 0}.
These functions are now known as modular forms.

A modular form of weight £ > 0 and level N is a holomorphic function
f : H — C satisfying:

¢ the transformation law
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for all integers a, b, ¢, d with ad —bc =1 and N | ¢;

* a growth condition, stating that for every a, b, ¢, d € Z such that

ad —bc =1,
+b
g —F az
(cz +d) f(cz+d)

remains bounded as Im(z) — co.

These conditions imply that f admits a Fourier expansion

o0

f(z)= Z Cp €277 z € H, (3)

with complex coefficients ¢, = ¢,(f).

A central theme in the arithmetic of elliptic curves is the study of the number
N, = N,(E) of solutions to (1) modulo a prime p, that is, the number of F,,-
points on E.

In 1936, Hasse (Hasse 1936), confirming a conjecture of Artin from 1924,
proved the celebrated estimate

p— 25 < Ny(E) < p+2/p. (4)
Equivalently, one defines the quantity
a, = a,(E) :=p — Ny(E), (5)

known as the trace of Frobenius at p, which satisfies |a,| < 2,/p."

An elliptic curve E over Q is called modular if there exists a modular form
f = f(E) such that, for every prime p not dividing A g, the equality

ap(E) = ¢p(f)
holds between the trace of Frobenius of E and the p-th Fourier coefficient of f.

Taniyama and Shimura conjectured that every elliptic curve over Q is modular.
This statement, now known as the Taniyama—Shimura conjecture or the
modularity conjecture, was strikingly unexpected: the sequences {a,(£)} and
{cy(f)} arise from entirely different worlds—arithmetic geometry on one side
and complex analysis on the other—and their agreement appears almost
miraculous.



In 1986, Ribet (Ribet 1990), proving a conjecture of Serre, showed that if
Fermat’s Last Theorem were false, then there would exist an elliptic curve—now
called the Frey curve—which is not modular. In 1995, Wiles (Wiles 1995)
proved the modularity conjecture for a large class of elliptic curves, including
the Frey curve. Together, these results established Fermat’s Last Theorem.

While Wiles’s work stands as one of the crowning achievements of 20th-century
mathematics, it did not settle the modularity conjecture in full generality. This
final step was achieved in 2001 by Breuil, Conrad, Diamond, and Taylor (Breuil
et al. 2001).

Theorem 1 (Modularity Theorem) FEvery elliptic curve E over Q is
modular. More precisely, E corresponds to a modular form of weight k = 2
and level Ag.

The authors of (Breuil et al. 2001) proved a substantially stronger version of
Theorem 1, establishing additional structural properties of the associated
modular form. For the purposes of most applications, however, the formulation
above—communicated to the author by Dan Fretwell—captures the essential
content while remaining easy to state.

The proof of Theorem 1 builds on Wiles’s groundbreaking ideas, extending and
refining them to treat the remaining cases. Since 2001, the Modularity Theorem
and the methods developed for its proof have become central tools in number
theory, with far-reaching consequences well beyond their original scope.
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1. Often one includes the point at infinity among the solutions modulo p. In that
convention, a, = p + 1 — M,,, where M, is the total number of points.<
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