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Introduction
The Skorokhod Embedding theorem says the following:

With this theorem, one can embed any random walk whose increments are given

by the distribution of  into a Brownian motion, allowing us to study random

walks through studying Brownian motion.

Skorokhod, however, did not prove this statement exactly. He relied on “external

randomisation” to achieve this result. Dubins however realised the distribution

of  within the natural filtration of Brownian motion itself essentially proving

a manner of probability integral transform for Brownian motion.

Despite the clear significance of the theorem, I have not managed to find an

exact rigorous treatment of the proof. Proofs can be found in Mörters and Peres

(2010), Dubins (1968), and Meyer (1971) among other resources, but they all

have faults in rigour somewhere or the other, and the steps to make it rigorous is

not completely straightforward either. Some of the unjustified statements

actually require the optionally stopping theorem which is nowhere mentioned in

these proofs. I present a clear formalisation.

Preliminary results
First, we shall state Wald’s lemma (for a proof, see Mörters and Peres (2010,

theorems 2.44 and 2.48)), which allows us to prove the embedding theorem for

simple random walks.
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Now, we shall state some standard results on martingales. Their proofs can be

found in Durret (2019, theorems 4.4.6, 4.6.3) and Mörters and Peres (2010,

proposition 2.42).



Dubins’ approximation
Dubins (1968) showed how a random variable having finite variance can be

approximated by employing a sort of binary search algorithm. Consider a

random variable . We let  to be the expectation of  i.e., our “best guess”

when no other information is present. Now, add the information whether 

 or not. Our next “best guess”  is the expectation on  conditioned

on this information. We repeat this for successive . The resultant sequence is a

uniformly integrable martingale that converges to  both almost surely and in 

.

We will show that our sequence of guesses form a binary-splitting martingale.

Define , . Recursively, define , 

, and . It is clear that we have defined a

martingale.

Let  denote . Since the Borel -algebra on 

is generated by the singletons, and  is the smallest -aglebra making 

measurable, it follows that  is generated by the -sized partition 

The conditional expectation  is given by 

provided . We write  for the (constant) value of  on 

in  i.e., .

Clearly, conditioned on ,  is supported on at most two values

provided the former is not of zero probability. We want to show that such a

condition is equivalent to conditioning on the values of  so as to

prove that the martingale defined is binary-splitting. Consider the lexicographic

ordering on . We claim that for ,  if and only if 

 provided probability of neither  nor  is



zero. Let  such that neither  nor  have probability

zero. We write  for the -th element of  and similarly . Let  be maximal

such that  for all  (define it to be  if it does not exist). Then 

. For  and , we have 

 since by martingale property 

If the -th element of  is , that means , and if , then .

Hence, for  as defined before, 

which proves the necessity. To prove sufficiency, assume .

Then,  cannot equal  provided the probabilities are non-zero. Define ,  and

 as before. We still have . If , then,

similarly as before, 

which contradicts that . The claim is proved.

Write  for the event 

Now,  is an event about  measurable functions and so, is in , and

hence, is a union of events of type  (since these form a partition that

generate ), but due to the claim just proved, it must be that .

So, conditioning on  is same as conditioning on , and under this

condition  is supported on two values  and . Therefore,

the martingale defined is binary-splitting.

Using that conditional expectations are projections, , which shows

that the martingale is  bounded, and hence, converges to some  almost

surely and in  by .

We shall show that . Let . We claim that 

If , then eventually  and , and almost surely, 



If instead, , then similarly  and , and almost surely, 

By Hölder’s inequality,  is uniformly integrable as 

which goes to  as  goes to . Therefore, By , 

but 

Therefore, 

Proof of the Skhorokhod
embedding theorem

It follows from  that  is embedded in  and  is

uniformly bounded in . Assume the induction hypothesis that  and 

 is uniformly bounded in  by some integrable . Then, 

 is uniformly bounded since for , 

and for , if  denotes the unique binary word in  such

that , 



So, by , 

and by martingale property, 

Both the conditional distributions of  and 

 are centred on  and supported on ,

which shows they are equal since there is only one such distribution. In the

following equation, for ease of notation, we are going to write  and  for 

and . 

which proves that . Now, to prove the condition of second

moment, we use the martingale . Assume the induction

hypothesis that . Define for all , 

Then, 

Define  to be . Then, using MCT and , 

For , 

and for , similarly as before, 

So, by DCT, 

Hence, —being a sum of finite expectation variables—is also of finite

expectation. So, we have that 



where the bound is integrable. So, we can use  to

obtain 

Hence, .

So, we have a non-decreasing sequence  of stopping times such

that 

Supremum of countable stopping times is also a stopping time, which makes 

one. By MCT, and  convergence, 

Since , and  converges almost surely to , we get that 

converges in distribution to . Since  converges almost surely to , it

follows that .

References
Dubins, Lester E. 1968. “On a Theorem of Skorohod.” The Annals of

Mathematical Statistics 39 (6): 2094–97. https://doi.org/10.1214/aoms/

1177698036. 

Durret, Rick. 2019. Probability - Theory and Examples. 5th ed. Cambridge

Series in Statistical and Probabilistic Mathematics. Cambridge University

Press. 

Meyer, Paul-André. 1971.“ Sur Un Article de Dubins.” Séminaire de

Probabilités de Strasbourg 5: 170–76. https://www.numdam.org/item/

SPS_1971__5__170_0/. 

Mörters, P., and Y. Peres. 2010. Brownian Motion. Cambridge Series in

Statistical and Probabilistic Mathematics. Cambridge University Press. 

https://doi.org/10.1214/aoms/1177698036
https://doi.org/10.1214/aoms/1177698036
https://www.numdam.org/item/SPS_1971__5__170_0/
https://www.numdam.org/item/SPS_1971__5__170_0/

	A formalisation of Dubins’ proof to Skorokhod’s embedding theorem
	Introduction
	Preliminary results
	Dubins’ approximation
	Proof of the Skhorokhod embedding theorem
	References

