A formalisation of Dubins’ proof to
Skorokhod’s embedding theorem

Shaikh Ammar =+ 14 Dec 2025

Introduction

The Skorokhod Embedding theorem says the following:

Theorem 1 (Skorokhod’s embedding theorem). Let £ be a mean-zero finite
variance random variable. Let {B(t) | t > 0} be a Brownian motion. Then,
there is a stopping time T with respect to the natural filtration of the Brownian
motion such that

B(T) < ¢, ET = Ee2.

With this theorem, one can embed any random walk whose increments are given
by the distribution of ¢ into a Brownian motion, allowing us to study random
walks through studying Brownian motion.

Skorokhod, however, did not prove this statement exactly. He relied on “external
randomisation” to achieve this result. Dubins however realised the distribution
of ¢ within the natural filtration of Brownian motion itself—essentially proving
a manner of probability integral transform for Brownian motion.

Despite the clear significance of the theorem, I have not managed to find an
exact rigorous treatment of the proof. Proofs can be found in Morters and Peres
(2010), Dubins (1968), and Meyer (1971) among other resources, but they all
have faults in rigour somewhere or the other, and the steps to make it rigorous is
not completely straightforward either. Some of the unjustified statements
actually require the optionally stopping theorem which is nowhere mentioned in
these proofs. I present a clear formalisation.

Preliminary results

First, we shall state Wald’s lemma (for a proof, see Morters and Peres (2010,
theorems 2.44 and 2.48)), which allows us to prove the embedding theorem for
simple random walks.


https://functor.network/user/3314/entry/1531
https://functor.network/user/3314/entry/1531
https://functor.network/user/3314/entry/1531
https://functor.network/user/3314

Theorem 2 (Wald’s lemma). Let T be a stopping time of finite mean with
respect to the natural filtration of a Brownian motion {B(t) | t > 0}. Then,

EB(T) = 0. EIB(T)Y = ET.

Lemma 3 (Embedding theorem for simple random walks). Let £ be a mean-
zero random variable supported on two values {a,b}. Let T = Trqp) be the
hitting time of {a,b}. Then, £ is embedded in B(T) as in theorem 1.

Proof. Hitting times of closed sets are stopping times, so 7T is indeed a stop-
ping time. E¢ = 0 mandates a < 0 < b. Define T,, = T'An. Then, by Wald’s
lemma

EB(T,) = 0, E[B(T,)) = ET,.
Almost surely, B(T,,) — B(T), and B(T,)* — B(T)?, and
|B(T,)| < max(—a,b), B(T,)* < max(a®, b%).

So, by DCT and MCT,

EB(T) = limEB(T,) E[B(T)?| = limE[B(T},)?]
—0 = limET,
— ET.

This proves Wald’s identities for T'.
Now, note that there is only one probability distribution supported on {a,b}
and with expectation 0. ¢ follows this distribution, and we have just proved
B(T) also does. So, they are distributed the same. Using this on the second
identity, we get that

E¢? = E[B(T)?] = ET. O

Now, we shall state some standard results on martingales. Their proofs can be
found in Durret (2019, theorems 4.4.6, 4.6.3) and Morters and Peres (2010,
proposition 2.42).

Theorem 4 (Martingale L*-convergence theorem). A discrete-time martin-
gale bounded in L* converges almost surely and in L? to an identical limit.

Lemma 5. If {X,, | n € N} is uniformly integrable, and X,, — X in proba-
bulity, then EX,, — EX.

Theorem 6 (Optional stopping theorem). Let 0 < S < T be stopping times
for a continuous martingale {M, | t > 0}, such that |M (T At)| is bounded by
an integrable random variable, then

E[M(T) | Fs] = M(5),

where Fs denotes the stopped o-algebra.



Dubins’ approximation

Dubins (1968) showed how a random variable having finite variance can be
approximated by employing a sort of binary search algorithm. Consider a
random variable X. We let X to be the expectation of X i.e., our “best guess”
when no other information is present. Now, add the information whether

X > Xy or not. Our next “best guess” X; is the expectation on X conditioned
on this information. We repeat this for successive n. The resultant sequence is a
uniformly integrable martingale that converges to X both almost surely and in
L.

Definition (Binary-splitting martingale). Let {(X,,,G,) | n € N} be a mar-
tingale. Then, it is said to be binary-splitting if whenever the event

Az, x1, .. xn) ={Xo =20, X1 =21,..., Xp =2, }

has non-zero probability, X,,1; conditioned on this is supported on at most
two values.

We will show that our sequence of guesses form a binary-splitting martingale.

Theorem 7 (Dubins’ approximation). Let X : Q — R be a random variable
having finite variance. Then there is a binary-splitting martingale converging
to it almost surely and in L?.

Define Gy = {0, 2}, Xy = EX. Recursively, define €, = 1yx>x,_,},
Gn=o0(e1,...,€,),and X,, = E[X | G,]. It is clear that we have defined a
martingale.

Let E,, : 2 — {0, 1}" denote (e, ...,€,). Since the Borel o-algebra on {0, 1}"
is generated by the singletons, and G,, is the smallest o-aglebra making F,
measurable, it follows that G, is generated by the 2"-sized partition

P, ={E ()| ec{0,1}"}.

The conditional expectation X, is given by

EX1(g, -]

Xlw) = pp =

if £,(w) =e,
provided P{E, = e} # 0. We write X,,(e) for the (constant) value of X,, on w
in{E, =e}ie, X,(e)=E[X | E, =¢€].

Clearly, conditioned on F,, = e, X1 is supported on at most two values
provided the former is not of zero probability. We want to show that such a
condition is equivalent to conditioning on the values of X;,..., X,, soasto
prove that the martingale defined is binary-splitting. Consider the lexicographic
ordering on {0, 1}". We claim that for e, m € {0,1}", e < m if and only if

X, (e) < X, (m) provided probability of neither { E,, = e} nor {E,, = m} is



zero. Let e < m such that neither {£,, = m} nor {E,, = e} have probability
zero. We write e; for the ¢-th element of e and similarly m,. Let ¢ be maximal
such that e; = m; for all j < ¢ (define it to be 0 if it does not exist). Then
0=-¢e;41 <mir1 = 1.Forw € {E, =m} and o' € {E,, = e}, we have
X;(w) = X;(w') since by martingale property

Xi(w) =E[X, | E; = (mq,...,m;)] =E[X, | E; = (e1,...,6)] = Xi(w).

If the (i + 1)-th element of £, is 1, that means X > X, and if 0, then X < X.
Hence, for w,w’ as defined before,

E[X1(5,=m)]
Xo(w) = bl > ¥,
() = PR 2 Xilw)
E[X1(5,=)]
= X(w) > By (),
) > i = Xul)
which proves the necessity. To prove sufficiency, assume X, (e) < X,(m).
Then, e cannot equal m provided the probabilities are non-zero. Define 4, w and
w’ as before. We still have X;(w) = X;(w’). If 0 = m;41 < ;41 = 1, then,

similarly as before,

X, (w) = % < X;(w)
— X(W) < % — X, (W),

which contradicts that X, (w) > X,,(w’). The claim is proved.
Write A(e) for the event
{XO == 0, X1 == X1(61>,X2 == X2(61, 62), N ,Xn = Xn(€>}

Now, A(e) is an event about G,, measurable functions and so, is in G,,, and
hence, is a union of events of type {F,, = e} (since these form a partition that
generate G,,), but due to the claim just proved, it must be that A(e) = {E,, = e}.
So, conditioning on A(e) is same as conditioning on {E,, = e}, and under this
condition X, is supported on two values X, (e, 1) and X, (e, 0). Therefore,
the martingale defined is binary-splitting.

Using that conditional expectations are projections, EX? > EX?, which shows
that the martingale is L? bounded, and hence, converges to some X, almost
surely and in L? by Martingale L2-convergence theorem.

We shall show that X, = X. Let ¢, = 2¢,, — 1. We claim that
en(X — X)) = | X — Xoo| as.

If X > X, then eventually X > X, and ¢, = 1, and almost surely,



(X —X,) > X — X=X - X
If instead, X < X, then similarly X < X,, and ¢, = —1, and almost surely,
(X —X,) —» X+ Xoo =X - X,

By Holder’s inequality, €,(X — X,,) is uniformly integrable as

Elen (X — X,)1a| = E[(X — X,,)14|

< E|X14] 4+ E|X,14]

< [(EX?)Y2 + (EX7) V2] P(A)?

< 2(EX?)V2P(A)?,
which goes to 0 as P(A) goes to 0. Therefore, By lemma 5,

Ele, (X — X,)] = E|X — X,
but
Ele. (X — X,,)] = E[e,E[X — X,, | G,]] = 0.

Therefore,

EX - X, =0 = X% X_.

Proof of the Skhorokhod
embedding theorem

Theorem 8 (Dubins’ embedding). Consider the setup as in theorem 1. Let
{&. | n € N} be the Dubins approzimation of . Define T to be the hitting
time of {£1(0),&(1)}. Recursively, define

T, = int{t > T, | B(t) € {&.(e) | e € {0,117},

Then, & is embedded in B(supT,).

It follows from lemma 3 that £; is embedded in B(77) and B(T7 A t) is
uniformly bounded in ¢. Assume the induction hypothesis that B(T;,) = &, and
B(T,, At) is uniformly bounded in ¢ by some integrable M,,. Then,

| B(T,+1 A t)| is uniformly bounded since for ¢ < T,,,

BT A)| = [B(Tu AD)] < M,
and for ¢t > T, if F,, € {0,1}" denotes the unique binary word in {0, 1}" such
that B(T,,) = & (En),
|B(Th1 A1) < max [§,41(FEn, 1)
1€{0,1}

< .
< cmax e (@)



So, by Optional stopping theorem,
E[B(Th41) | B(T5) = &nle)] = &nle),
and by martingale property,

E[§n+1 | &n = gn(e)] = gn(e)

Both the conditional distributions of B(T,,+1) | B(T,) = &.(e) and

Ent1 | & = &n(e) are centred on &, (e) and supported on {&,,11(e,0),&,41(e, 1)},
which shows they are equal since there is only one such distribution. In the

following equation, for ease of notation, we are going to write e and m for £, (e)

and fnJrl <m>

P(B(Tyi1) =m) = Y P(B(Tns1) =m| B(T,) = e)P(B(T,) = ¢)

ec{0,1}"

= > Pllwi=m|& =P =c)
ec{0,1}"

= P(fn—i—l = m)?

which proves that B(7T},11) = &,.1. Now, to prove the condition of second
moment, we use the martingale {B(¢)? —t | ¢ > 0}. Assume the induction
hypothesis that ET,, = E£2. Define for all e € {0,1}",

1o = 1inf{t > T, | B(t) € {(e,0), (e, 1)} }.
Then,

Tn+1 = Z 7—e]-{Tn:e}-

ec{0,1}"
Define 7% to be 7. A k. Then, using MCT and Wald’s lemma,

Er, = lim Er* = lim E[B(7*)?].
k—ro0 k—ro0

For k < T,
B(t%)? = B(T, N k)* < M2,

€

and for k > T, similarly as before,

So, by DCT,
Er, = limE[B(7%)?] = E[B(7.)?] £ max &,.1(z)2

z€{0,1}"

Hence, T, 11—being a sum of finite expectation variables—is also of finite
expectation. So, we have that



|B<Tn+1 /\t) - Intl /\t| <M, +1 +Tn+17

where the bound is integrable. So, we can use Optional stopping theorem to
obtain

E[B(Ty1)? — Tons | Fr,] = B(T,)? — T,
— E[B(Ty1)’ — To] = EIB(T,)* — T3] = .

Hence, E&2,, = E[B(T,,11)*] = ET,,41.

So, we have a non-decreasing sequence {7, | n € N} of stopping times such
that

B(T,) £ ¢, ET, = E¢2.

Supremum of countable stopping times is also a stopping time, which makes T’
one. By MCT, and L? convergence,

ET = limET, = limE¢? = E£2.

Since B(T;) = &,, and &, converges almost surely to &, we get that B(T},)
converges in distribution to £. Since B(7},) converges almost surely to B(T), it
follows that B(T) = &.
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