Least squares estimation under linear constraints - A projective proof

Shaikh Ammar • 6 Dec 2025

Introduction

Consider the regression problem

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}, \quad \text{var}[\boldsymbol{\epsilon}] = \sigma^2 \mathbf{I}.$$

The least squares estimation of β under the constraint $A\beta = c$ generally involves solving the Lagrangian. Like many optimisation problems in linear models, a purely linear algebraic proof involving projections exists. Such projective proofs are typically more enlightening and less tedious. Seber and Lee (2003) contains such a projective proof, but the proof is far from enlightening and if anything, even more tedious than the Lagrangian method. I present a non-standard proof that is not only less tedious but the use of projections gives way easily to the sum of squared identities used in F-test.

Inner products induced by a matrix

In the euclidean inner product space, the orthogonal projector into the column space of a full-column-rank matrix \mathbf{X} is given by $\mathbf{X}(\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}$. This form obviously does not carry over to different inner products.

Lemma. Let **B** be a positive-definite matrix. Consider the inner product:

$$\langle \cdot, \cdot \rangle_{\mathbf{B}} : (\mathbf{x}, \mathbf{y}) \mapsto \mathbf{x}^{\mathsf{T}} \mathbf{B} \mathbf{x}.$$

The orthogonal projector into the column space of a full-column-rank matrix X under this inner product is given by

$$\mathbf{X}(\mathbf{X}^\mathsf{T}\mathbf{B}\mathbf{X})^{-1}\mathbf{X}^\mathsf{T}\mathbf{B}.$$

Proof. Let **P** be the required projector. Then, since column space of **P** must equal that of \mathbf{X} , $\mathbf{P} = \mathbf{X}\mathbf{T}$ for some \mathbf{T} . We have that for every \mathbf{y} , \mathbf{z} ,

$$\langle \mathbf{X}\mathbf{z}, (\mathbf{I} - \mathbf{P})\mathbf{y} \rangle = 0$$

 $\iff \mathbf{z}^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{B}(\mathbf{I} - \mathbf{P})\mathbf{y} = 0.$

This must be true for every vector \mathbf{z} and \mathbf{y} , and in particular for the canonical basis vectors, which implies

$$\mathbf{X}^{\mathsf{T}}\mathbf{B}(\mathbf{I} - \mathbf{P}) = 0$$

$$\iff \mathbf{X}^{\mathsf{T}}\mathbf{B} - \mathbf{X}^{\mathsf{T}}\mathbf{B}\mathbf{X}\mathbf{T} = 0$$

$$\iff (\mathbf{X}^{\mathsf{T}}\mathbf{B}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{B} - \mathbf{T} = 0$$

as desired. \Box

In the euclidean inner product space, the column space of a matrix X is orthogonal to its row space. A similar result exists for this inner product.

Lemma. Under the preceding inner product, the orthogonal complement of $C(\mathbf{X})$ is $\mathcal{N}(\mathbf{B}^{-1}\mathbf{X}^{\mathsf{T}})$.

Proof. Let \mathbf{z} be orthogonal to $\mathcal{C}(\mathbf{X})$. Then for all vectors \mathbf{y} ,

$$\mathbf{z}^{\mathsf{T}}\mathbf{B}\mathbf{X}\mathbf{y} = 0$$

$$\iff (\mathbf{X}^{\mathsf{T}}\mathbf{B}\mathbf{z})^{\mathsf{T}}\mathbf{y} = 0$$

$$\iff \mathbf{X}^{\mathsf{T}}\mathbf{B}\mathbf{z} = 0.$$

where the last statement follows from the fact that the previous holds true for all y.

Projections into affine subspaces

Standard treatments of linear algebra generally only talk about projections into *linear* subspaces. Whenever a projection into an *affine* subspace is required, the affine subspace is converted into a linear subspace by an appropriate shift in the origin. However, treating affine projections as bona fide projections in their own right can be more instructive.

Definition (Affine subspace). An *affine subspace* is a set of the form $S' = \mathbf{u} + S$, where S is a linear subspace. The orthogonal projection of \mathbf{x} into S' is a vector $\hat{\mathbf{x}}$ such that

$$\mathbf{x} = \hat{\mathbf{x}} + \mathbf{y},$$

where $\hat{\mathbf{x}} \in S'$, and $\mathbf{y} \in S^{\perp}$.

It can be easily verified that projections into affine subspaces are unique as well. This leads to an *affine* projector operator \mathbf{P}' . The following is also easy to verify.

Theorem. Let \mathbf{P}' be the orthogonal projector into S', and \mathbf{P} the orthogonal projector into S. Then,

$$P'x = u + P(x - u)$$

Affine projections—like linear projections—minimise norm of the difference.

Theorem. The minimisation problem

$$\min \quad \|\mathbf{x} - \mathbf{z}\|$$
s.t. $\mathbf{z} \in S'$

is attained at the orthogonal projection of \mathbf{x} into S'.

Proof. Minimising $\|\mathbf{x} - \mathbf{z}\|$ over $\mathbf{z} \in S'$ is equivalent to minimising $\|(\mathbf{x} - \mathbf{u}) - (\mathbf{z} - \mathbf{u})\|$ over $\mathbf{z} - \mathbf{u} \in S$. This is attained $\mathbf{z} - \mathbf{u} = \mathbf{P}(\mathbf{x} - \mathbf{u})$, or equivalently $\mathbf{z} = \mathbf{P}'\mathbf{x}$.

If a linear subspace is included in a larger one, iteratively projecting first, into the larger one, and then into the smaller one is equivalent to directly projecting into the smaller one. We have a similar result for affine subspaces.

Theorem. Let $S' = \mathbf{u} + S$ be an affine subspace included in a linear subspace T, where $\mathbf{u} \in T$. Let \mathbf{P}' , \mathbf{P} and \mathbf{Q} be the orthogonal projectors of S', S and T respectively. Then,

$$P' = P'Q$$

Proof. For any vector \mathbf{x} ,

$$egin{aligned} \mathbf{P}'(\mathbf{Q}\mathbf{x}) &= \mathbf{P}(\mathbf{Q}\mathbf{x} - \mathbf{u}) + \mathbf{u} \\ &= \mathbf{P}\mathbf{Q}\mathbf{x} - \mathbf{P}\mathbf{u} + \mathbf{u} \\ &= \mathbf{P}\mathbf{x} - \mathbf{P}\mathbf{u} + \mathbf{u} \\ &= \mathbf{P}(\mathbf{x} - \mathbf{u}) + \mathbf{u} \\ &= \mathbf{P}'\mathbf{x}, \end{aligned}$$

where we have used the fact that P = PQ since $S = S' - \mathbf{u} \subseteq T$.

Proof of the estimator

Now, let's go back to regression problem. Let \mathbf{X}^L be a left-inverse of \mathbf{X} , and $\boldsymbol{\beta}_0$ be a particular solution to the constraint. Then, since $\mathbf{A}\boldsymbol{\beta} = \mathbf{c}$ if and only if $\mathbf{A}\mathbf{X}^L(\mathbf{X}\boldsymbol{\beta}) = \mathbf{c}$,

$$\begin{aligned} \mathbf{A}\boldsymbol{\beta} &= \mathbf{c} \\ \iff & \boldsymbol{\beta} \in \boldsymbol{\beta}_0 + \mathcal{N}(\mathbf{A}) \\ \iff & \mathbf{X}\boldsymbol{\beta} \in \mathcal{C}(\mathbf{X}) \cap (\mathbf{X}\boldsymbol{\beta}_0 + \mathcal{N}(A\mathbf{X}^\mathsf{L})) \end{aligned}$$

We thus want the solution to the problem

$$\begin{aligned} & \min & & \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\| \\ & \text{s.t.} & & \mathbf{X}\boldsymbol{\beta} \in \mathcal{C}(\mathbf{X}) \cap (\mathbf{X}\boldsymbol{\beta}_0 + \mathcal{N}(\mathbf{A}\mathbf{X}^\mathsf{L})) \end{aligned}$$

Owing to the preceding theorem, we can first project \mathbf{y} into $\mathcal{C}(\mathbf{X})$, and then into $\mathcal{C}(\mathbf{X}) \cap (\mathbf{X}\boldsymbol{\beta}_0 + \mathcal{N}(\mathbf{A}\mathbf{X}^\mathsf{L}))$. The first projection is just the least squares projection $\mathbf{X}\hat{\boldsymbol{\beta}}$, where $\hat{\boldsymbol{\beta}}$ is the least squares coefficient. The second projection is the minimisation problem

$$\begin{aligned} & \min & & \|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}\| \\ & \text{s.t.} & & \mathbf{X}\boldsymbol{\beta} \in \mathcal{C}(\mathbf{X}) \cap (\mathbf{X}\boldsymbol{\beta}_0 + \mathcal{N}(\mathbf{A}\mathbf{X}^\mathsf{L})), \end{aligned}$$

but since $\|\mathbf{X}\hat{\boldsymbol{\beta}} - \mathbf{X}\boldsymbol{\beta}\| = \|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_{\mathbf{X}^{\mathsf{T}}\mathbf{X}}$, this is equivalent to

min
$$\|\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}\|_{\mathbf{X}^{\mathsf{T}}\mathbf{X}}$$

s.t. $\boldsymbol{\beta} \in \boldsymbol{\beta}_0 + \mathcal{N}(\mathbf{A}),$

This is attained at the projection of $\hat{\boldsymbol{\beta}}$ into $\boldsymbol{\beta}_0 + \mathcal{N}(\mathbf{A})$ under the inner product induced by $\mathbf{X}^\mathsf{T}\mathbf{X}$, or equivalently $\boldsymbol{\beta}_0$ plus the projection of $\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0$ into $\mathcal{N}(\mathbf{A})$. By the lemmas in the discussion of inner product, the projector into $\mathcal{N}(\mathbf{A})$ is the projector into the orthogonal complement of $\mathcal{C}((\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{A}^\mathsf{T})$ which is

$$\mathbf{I} - (\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{A}^\mathsf{T}(\mathbf{A}(\mathbf{X}^\mathsf{T}\mathbf{X})^{-1}\mathbf{A}^\mathsf{T})^{-1}\mathbf{A}$$

We thus have the final solution

$$\boldsymbol{\beta} = \boldsymbol{\beta}_0 + (\mathbf{I} - (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{A}^\mathsf{T} (\mathbf{A} (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{A}^\mathsf{T})^{-1} \mathbf{A}) (\hat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)$$
$$= \hat{\boldsymbol{\beta}} - (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{A}^\mathsf{T} (\mathbf{A} (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{A}^\mathsf{T})^{-1} (\mathbf{A} \hat{\boldsymbol{\beta}} - \mathbf{c}),$$

where it has been used that $\mathbf{A}\boldsymbol{\beta}_0 = \mathbf{c}$.

Decomposition of sum of squares

Let $\hat{\mathbf{y}}$ be the least squares projection of \mathbf{y} , and \mathbf{y}_H the projection of \mathbf{y} into the constrained affine subspace

$$C(\mathbf{X}) \cap (\mathbf{X}\boldsymbol{\beta}_0 + \mathcal{N}(\mathbf{A}\mathbf{X}^{\mathsf{L}})).$$

We have easily from the Pythagorean theorem that

$$\|\mathbf{y} - \mathbf{y}_H\|^2 = \|\mathbf{y} - \hat{\mathbf{y}}\|^2 + \|\hat{\mathbf{y}} - \mathbf{y}_H\|^2$$

since $\mathbf{y} - \hat{\mathbf{y}}$ is orthogonal to $\mathcal{C}(\mathbf{X})$ and $\hat{\mathbf{y}} - \mathbf{y}_H$ is in $\mathcal{C}(\mathbf{X})$. The projection approach shows clearly that \mathbf{y}_H minimises $\|\hat{\mathbf{y}} - \mathbf{y}_H\|$ over the constrained space. This identity is usually written as

$$RSS_H = RSS + (RSS_H - RSS),$$

and the F-statistic is given by

$$\frac{(RSS_H - RSS)/q}{RSS/(n-p)},$$

where p is the number of columns in \mathbf{X} (including the column of 1s), and q the number of rows in \mathbf{A} (i.e., the number of linear constraints). The numerator is just

$$\|\hat{\mathbf{y}} - \mathbf{y}_H\|^2 = \|(\mathbf{P} - \mathbf{P}_H)\mathbf{y}\|^2,$$

where \mathbf{P} and \mathbf{P}_H are the projectors into the $\mathcal{C}(\mathbf{X})$ and $\mathcal{C}(\mathbf{X}) \cap (\mathbf{X}\boldsymbol{\beta}_0 + \mathcal{N}(\mathbf{A}\mathbf{X}^\mathsf{L}))$. We thus have the F-statistic as

$$\frac{n-p}{q} \cdot \frac{\mathbf{y}^{\mathsf{T}}(\mathbf{P} - \mathbf{P}_{H})\mathbf{y}}{\mathbf{y}^{\mathsf{T}}(\mathbf{I} - \mathbf{P})\mathbf{y}}$$

References

Rao, A. R., and P. Bhimasankaram. 2000. *Linear Algebra*. Texts and Readings in Mathematics. Hindustan Book Agency Gurgaon. https://doi.org/10.1007/978-93-86279-01-9.

Seber, G. A. F, and A. J. Lee. 2003. *Linear Regression Analysis*. Wiley Series in Probability and Statistics. Wiley.