An integer n>=3 can be expressed as a sum of 2 or more positive integers if and only if n is not a power of 2.

Nathan • 3 Dec 2025

Theorem

An integer $n \ge 3$ can be expressed as a sum of 2 or more positive integers if and only if n is not a power of 2.

Proof

Part 1: Forward Direction

Assume $n \ge 3$ is not a power of 2. We find consecutive integers starting at a with length K such that their sum is n.

Note:

$$(a) + (a+1) + \dots + (a+K-1) = aK + \frac{K(K-1)}{2} = \frac{K}{2}[2a+K-1]$$

Thus, we find a, K such that $\frac{K}{2}[2a + K - 1] = n$ or, identically,

$$K[2a + K - 1] = 2n (1)$$

Note that 2a+K-1 and K have opposite parity (difference is odd), so we must decompose 2n (and thus n) into an even and odd part. To do this, we take out successive factors of 2 such that an odd part remains. Hence, $n=2^rs$ with nonnegative integer r and odd integer $s\geq 3$, which is guaranteed to exist as n is not a power of 2. Let s=2t+1 where $t\in\mathbb{Z}$.

We now decompose $2n = 2^{r+1}s$ by assigning 2^{r+1} and s to K and 2a + K - 1 without introducing negative integers.

Case 1: $s < 2^{r+1}$

Let
$$K=s, \, 2a+K-1=2^{r+1}.$$

$$a=\frac{2^{r+1}-2t-1+1}{2}=2^r-t.$$

 $K \in \mathbb{Z}$ and a is a nonnegative integer as $2^{r+1} > s = 2t + 1 > 2t$, so $2^r > t$.

Hence $n = (2^r - t) + (2^r - t + 1) + \dots + (2^r + t + 1)$, as desired.

Case 2: $s > 2^{r+1}$

Let
$$K = 2^{r+1}$$
, $2a + K - 1 = s$.

$$a = \frac{2t + 1 + 1 - 2^{r+1}}{2} = t - 2^r + 1$$

 $K \in \mathbb{Z}$ and a is a nonnegative integer as

$$2t + 2 > s = 2t + 1 > 2^{r+1} \implies t + 1 > 2^r$$
.

Hence,
$$n = (t - 2^r + 1) + (t - 2^r + 2) + \dots + (t - 2^r + 2^{r+1})$$
, as desired.

Part 2: Reverse Direction

Assume to the contrary n is a power of 2, $n = 2^r$ for some positive integer r.

Since $2[(a) + (a+1) + \cdots + (a+K-1)] = K[2a+K-1]$ and the two terms K and 2a+K-1 have different parity, there must be an odd factor of 2n and thus n for it to be expressed as a sum of 2 or more positive integers. As $n=2^r$, there are no odd factors so this expansion is impossible.