Clutching construction for exotic spheres

mortalbulb • 16 Oct 2025

This is a quick note for my own benefit to record an idea I came across during my final year group project. We did this project on exotic spheres, which are manifolds that are *homeomorphic* to S^n but are not *diffeomorphic* to S^n . The theorem that we considered was the following:

Exotic Spheres There exist 7-manifolds that are homeomorphic but not diffeomorphic to the 7-sphere S^7 .

The part that I want to note here is the construction of the candidate manifolds for these Exotic Spheres. We did it using a technique called the 'clutching construction' and it is a way of construction vector bundles over spheres. Here is the construction in general:

- 1. Decompose S^n into its upper and lower hemispheres, which are homeomorphic to disks: $S^n = D^n_- \cup D^n_+$ where the boundary is the intersection $D^n_- \cap D^n_+ = S^{n-1}$.
- 2. Suppose we have a map $\varphi: S^{n-1} \to GL_k(\mathbb{R})$, then we define the quotient space $E_{\varphi} = (D_-^n \times \mathbb{R}^k) \sqcup (D_+^n \times \mathbb{R}^k) / \sim$ where we identify $(x,v) \in \partial D_-^n \times \mathbb{R}^k$ with $(x,\varphi(x)v) \in \partial D_+^n \times \mathbb{R}^k$. Note that if we apply $\varphi(x) \in GL_k(\mathbb{R})$ to $v \in \mathbb{R}^k$ we get another element of $GL_k(\mathbb{R})$.

So the 'gluing' of these bundles is trivial on the boundary of the hemispheres but the map φ introduces a twist in the fibres \mathbb{R}^k . This gives us a k-dimensional vector bundle

$$\mathbb{R}^k \longleftrightarrow E_{\varphi}$$

$$\downarrow^{\pi}$$

$$S^n = D^n_- \cup D^n_+$$

where the map π is projection onto the first coordinate, $\pi(x,v)=x$. We call the map φ a *clutching function* corresponding to the above vector bundle.

Here are a couple of definitions we will need.

Definition 1
$$GL_k^+(\mathbb{R}) = \{A \in \operatorname{Mat}_k(\mathbb{R}) : \det(A) > 0\}$$

Definition 2 $\operatorname{Vect}_+^n(X)$ is the isomorphism classes of oriented n-dimensional vector bundles over the space X

Proposition Two vector bundles, E_{φ} and E_{ψ} constructed as above are isomorphic if φ and ψ are homotopic

Proof

Suppose the maps $\varphi: S^{n-1} \to GL_k(\mathbb{R})$ and $\psi: S^{n-1} \to GL_k(\mathbb{R})$ are homotopic via the homotopy $F: S^{n-1} \times I \to GL_k(\mathbb{R})$. We can use this homotopy as a clutching function to construct a vector bundle. Define the quotient

$$E_F = (D_-^n \times I \times \mathbb{R}^k) \sqcup (D_+^n \times I \times \mathbb{R}^k) / \sim$$

where the equivalence relation now identifies $(x,t,v) \in \partial D^n_- \times I \times \mathbb{R}^k$ with $(x,t,F(x,t)v) \in \partial D^n_- \times I \times \mathbb{R}^k$. The vector bundle

$$\downarrow^{E_F} \\
\downarrow^{S^n \times I}$$

then restricts to E_{φ} over $S^n \times \{0\}$ and to E_{ψ} over $S^n \times \{1\}$. By Proposition 1.7 in Hatcher's 'Vector Bundles and K-Theory' these vectors bundles are then isomorphic.

This proposition gives us a bijection from the set of homotopy classes of maps $S^{n-1} \to GL_k^+(\mathbb{R})$ which we denote by $[S^{n-1}, GL_k^+(\mathbb{R})]$ to $\mathrm{Vect}_+^n(S^n)$. Denote this bijection by $\Phi: [S^{n-1}, GL_k^+(\mathbb{R})] \to \mathrm{Vect}_+^n(S^n)$. We can simplify this further by considering the special orthogonal group SO(k) which is a subgroup of $GL_k^+(\mathbb{R})$. We also want to construct bundles over S^4 so lets consider the case k=n=4. With these simplifications we get the following bijection:

$$\Psi: [S^3, SO(4)] \to \operatorname{Vect}^4_+(S^4)$$

Now $[S^3, SO(4)]$ is the set of homotopy classes of maps from $S^3 \to SO(4)$ and this is exactly $\pi_3(SO(4))$ so in fact we have a bijection:

$$\Psi: \pi_3(SO(4)) \to \operatorname{Vect}^4_+(S^4)$$

Lets calculate $\pi_3(SO(4))$. We need this proposition from Hatcher's 'Algebraic Topology'

Proposition 3 A covering space projection $p: (\tilde{X}, \tilde{x}_0) \to (X, x_0)$ induces isomorphisms $p_*: \pi_n(\tilde{X}, \tilde{x}_0) \to \pi_n(X, x_0)$ for all $n \geq 2$

Proposition 4 $\pi_3(SO(4)) \cong \mathbb{Z} \oplus \mathbb{Z}$

Proof By the previous proposition, it suffices to construct a covering space projection $p: S^3 \times S^3 \to SO(4)$, as then we will have $\pi_3(S^3 \times S^3) \cong \pi_3(SO(4))$. Since $\pi_3(S^3) \cong \mathbb{Z}$ we will then have $\pi_3(S^3 \times S^3) \cong \mathbb{Z} \oplus \mathbb{Z} \cong \pi_3(SO(4))$.

The following is based on this paper.

Define a homomorphism $\eta: S^3 \times S^3 \to SO(4)$ which takes a pair of unit quaternions (p,q), which we identify with S^3 , to the linear map $\psi_{p,q}: \mathbb{H} \to \mathbb{H}$ defined by $\psi_{p,q}(x) = pxq^{-1}$. Consider the kernel of this map, $\ker \eta = \{(p,q) \in S^3 \times S^3 \cong \mathbb{H} \times \mathbb{H} : px = xq \text{ for all } x \in \mathbb{H}\}$. Setting x=1, we get $(p,q) \in \ker \eta$ if p=q. This implies that p must be in the centre of \mathbb{H} , which is equal to $\mathbb{R} \in \mathbb{H}$. But since we are considering unit quaternions, this means that the centre is equal to $\{\pm 1\}$. Therefore $\ker \eta = \{(1,1),(-1,-1)\}$. So $S^3 \times S^3$ is a double cover of SO(4). We can conclude that η is a covering map and apply the previous proposition to get that $\pi_3(SO(4)) \cong \mathbb{Z} \oplus \mathbb{Z}$

Note that SO(n) also acts on D^n and S^{n-1} . So, if instead of taking the clutching functions over \mathbb{R} we restrict to some discs or spheres, then we get a disc or sphere bundle associated to the vector bundle that arises via the clutching construction.

Therefore to construct candidates for exotic spheres, we will consider S^3 bundles over S^4 with structure group SO(4). We can classify these vector bundles using $\pi_3(SO(4)) \cong \mathbb{Z} \oplus \mathbb{Z}$.

To construct these bundles, define a clutching function by

$$f_{i,j}: S^3 \to SO(4)$$

where $f_{i,j}$ takes a unit quaternion q (where we identify the unit quaternions with S^3) and sends it to the linear map $v \mapsto q^i v q^j$ as in this original paper by Milnor for some $v \in \mathbb{R}^4 \cong \mathbb{H}$, where we use quaternionic multiplication on the right hand side. Then for each $(i,j) \in \mathbb{Z} \oplus \mathbb{Z}$, we get a sphere bundle

$$S^3 \longleftrightarrow E_{i,j}$$

$$\downarrow$$

$$S^4$$

where the candidates for the exotic spheres are the total spaces of these bundles, E_{ij} .

We then went on to give conditions on $(i,j) \in \mathbb{Z} \times \mathbb{Z}$ such that E_{ij} is homeomorphic but not diffeomorphic to S^7 . I may go through these steps in further posts but for now I'll spoil the surprise here in two propositions presented without proof.

Proposition 5 $E_{i,j}$ is homeomorphic to S^7 when i+j=1.

Proposition 6 Let E_{ij} be a real, oriented, closed manifold as constructed above, with i+j=1 so that E_{ij} is a topological 7-sphere. Suppose E_{ij} is diffeomorphic to the 7-sphere. Then $(i-j)^2 \equiv \pm 1 \mod 7$.