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Often times, logic can feel unintuitive and very syntactical, especially if you don’t spend a lot of time

working with the ideas. This semester I’ve been doing a directed reading program in model theory, and

I’ve found that model theory is actually the opposite! There are some very rich and intuitive concepts

present in model theory, that I will try to describe here. My goal by the end of this blog post is to paint a

picture of what exactly a model is, and what it means for a model to be atomic or saturated. It should be

noted that the intended audience for this post is people who have some experience with propositional

and first order logic. This is likely you if you have taken your school’s computer science discrete math

class or intro to proofs class (or if you do any proof based math at all). Also, I am still learning this

stuff, and this post is to help me understand it better, so if there is any incorrect concepts, please let me

know!

Motivation
Often times I find the motivation behind many mathematical structures unmotivated, so here I will try

to first motivate what a model is, using some anologies.

Syntax versus Semantics

The difference between syntax and semantics is a pervasive idea that shows up in everywhere from

linguistics to theoretical CS. The best way to explain it is using natural language. In English, we have a

grammar that describes how we should form sentences. It doesn’t tell us much about what that sentence

means though. To demonstrate this, we can construct a sentence that is syntactically correct, but

semantically meaningless. The canonical example in linguistics is “Colorless green ideas sleep

furiously”. It is clearly grammatically correct, but it is not semantically meaningful, which seperates the

notions. Another example, for programmers, is in Python there is a way to form valid programs

(i.e. ones that parse), but this doesn’t say anything about what the program actually does.

Propositional Logic

Let’s first remember our propositional logic basics. As a very rough review, propositional logic is the

logic where we have a set of variables, and then we have the logical connectors . Some

example sentences in propositional logic are 
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We want to be able to reason about these sentences. What does it mean for a sentence to be a tautology?

What about what does it mean for one sentence to entail another? These questions can be answered in

two ways: syntactically, and semantically.

Syntax wise, this introduces the proof system we have all worked with. We have inference rules like

modus ponens, proof by contradiction, disjunctive syllogism, etc. They tell us how to manipulate

sentences to prove things. It is purely a syntax driven exercise: we don’t have to have any

understanding of the meaning of these sentences to push them around. If we can start with a set of

sentences , and prove some sentence , we write . We say that a sentence  is consistent if

there is no sentence  in our language where .

Semantic wise, we use valuations: total functions from the set of variables in our language to the set 

. Given a valuation, , we define a model, , as a total function from the set of all possible

sentences to the set . Before defining a model, I present some vocab. We then say a sentence(or a

set of sentences) has a model/is satisfiable if and only if there exists a model where  (or for a

set of sentences, that  makes every sentence true). We also say that given a set of sentences, , it 

models/satisfies a sentence  if and only if for all models that satisfy , they also satisfy . This is

written as . Finally, the obvious way to define models is as follows: 

The natural first question to ask is, do these notions coincide? Is our syntax based transformations as

strong (but not stronger!) than our semantic models? Thanks to the logicians of the past, we know that

this is true. To put it formally, we say that a sentence is consistent if and only if it has a model. We can

also use this notion to talk about sets of sentences. We say that a set of sentences, , is consistent if and

only if it is satisfiable. Finally, we know that  if and only if . This theorem is called the 

soundness and completeness theorem. I will not go into the proofs of these statements, but it is

sufficient to internalize the idea that in our vanilla propositional logic, syntax crunching is the same

notion as semantics.

First Order Logic

Now moving onto first order logic, we have a significant increase in degree of complexity. To review,

for formulas in first order logic are “parameterized” by a language. What this means is that we fix a 

language, , which is a set of constant symbols, , a set of function symbols (each with an

attatched arity) , and a set of relation symbols (also with an attatched arity) . We

can then write formulas in our language. Something that should be noted is that 

shouldn’t be denoted as a formula! It doesn’t say anything. We call these types of expressions as terms.

More formally, terms are just constants, function applications to terms, or variables. It should also be

noted that in first order logic, formulas can have free variables, which are just variables that aren’t



introduced using a quantifier. We write  to signify that the free variables of  are within 

 (it doesn’t have to use all of them). Here are some examples of first order formulas. 

We call a formula with no free variables a sentence.

Much like with propositional logic, I won’t go into the actual inference rules of our system, as I am

assuming you are already familiar with these. I instead will go straight into defining models. We want a

way to reason about our formulas in a semantic way much in the same way we reason about

propositional calculus. We need some “environment” where we assign things values (like valuations

did). We define this as a model. A model, , of a language, , is a non-empty set , called the

universe, equipped with 

Rather than go through the super dry and boring definition of what it means for a model to satisfy a

formula, I would like to rather describe what it should mean, and go from there. First off, models have

to fulfill formulas, which may have free variables. So, we should have some extra information: we say

a model satisfies a formula  at a tuple . Next, we should realize that terms

should represent elements of , and the formulas that are operations on terms (  or relations) should

be just checking if the property holds for the value in  the term represents. To clear up this notion, let

us take the example . We say that a model satisfies  at  if and

only if  in . Similarly, for terms, we say that our model satisfies the formula 

 on  if and only if  is true in . Ok, so now,

what should it mean for a model to satisfy the formula  on . Well, it should mean that 

 is satisfied on  as normal, but whenever  appears free in , we should be able to plug in

any , and our model should satisfy it. Similarly, for , it means that there exists some 

that can be plugged into every free occurrence of , and our model would satisfy it. Notice that for

sentences, we don’t need to write “on” anything, we can just say . Again, the syntax and

semantics of first order logic have the same power. So, a sentence is consistent if and only if it has a

model. Now that we have defined a model and how models and formulas interact, we can step back and

realize that the world of models is very rich and large. To study models of a language, we traditionally

take a set of sentences, , called a theory. We then study models of that theory (i.e. models that satisfy

every sencence in ). We say a theory  is complete if for every sentence , either  or .

An example

The theory of a simple order, in the language with one 2-place relation ( ), is as follows (presentation

from Chang and Keisler) 



These sentences are also known as transitivity, antisymmetry, reflexivity, and comparability. We will

call this theory  from now on. An example of a model of this theory would be  where  here is

the natural less than equal to realtion on the natural numbers.

Types
Let us say we have two different models  in our language . They can be very different

structures! From our previous example, take the model  of our simple linear order from

before. Also, take the model . These two models both satisfy our theory, . But, there is

something very different about  and . While  has a least element,  does not! For another

example, look to the language with no relations symbols, two function symbols , and two constants 

. We can take two models of this language,  and . Notice that 

 is missing some elements that  has: for example there is no element that satisfies the formula 

 in , but there is one in . We want to be able to talk about the absence or presence of

these objects in models, and so we will first formalize exactly what is the difference between these

models. A type is a set  of formulas with  free.  has to fulfills some specific properties for it

to be a type, described below 

The word maximal is new here. We say a set of formulas,  is maximal if and only if for every

formula , either  or . Basically, if a set of formulas is maximal, that

means it has made up its mind on what it wants any models to believe. There is nothing left to the

imagination. Given some type , we say a model realizes it if there is some  such that for

every formula , our model satisfies  on . We say a model omits So, an example of a

type in  is the set of all formulas, , that  makes true about . This is obviously consistent

(because the set has a model by definition) and is maximal (we take everything that holds true, so if

something does not hold true, we add its negation). It is clear that  realizes our type, while  omits it,

as some formula that looks like  is in our type, and  doesn’t have a least element. We want

to be able to classify how rich or barebones a model is. Does it realize any type that it possibly could

realize? Or does it realize only the types it has to realize? This brings in the two topics that this blog

post is mainly about.

Atomic Models
Atomic models are the models that are bare bones. I will first provide the formal definition, then

explore it through a topological space as a means for understanding it better. Fix some model  of a



complete theory . We say that a formula, , is complete with respect to  if and only if for all 

 in our language, exactly one of the following hold 

where a theory models a formula if for every model of the theory, every element  satisfies the

formula. We then say that  is atomic if and only if for all , there is some formula  that is

complete with respect to  that  realizes.

Ok that was dense. At surface level, one might think how does this even have anything to do with types,

let alone communicate that a model is barebones? Let us create a space in which to explore what that

definition means. Take the set  to be the set of all types  that are consistent with  (i.e. 

is satisfiable). We then define the topology using a basis. For every formula  in our language, we

let  be a basic set. Notice that this fulfills the topology rules of a topology, since

we can use  to get the empty set, and  to get all types (since types are

maximally consistent). For some context, this space is a stone space (not important, I won’t talk about

that here). We want to investigate the types that are isolated points in this space. A type, , is an

isolated point if and only if  is open in our space. Well, notice that this is true if and only if there

is some formula  such that it is not in any other type (since every open set is the arbitrary

union of basic sets). We know that this formula  is complete with respect to . This is because 

 logically “carries” all the information in , which is maximal and complete! We also know

that  is consistent with , so some model satisfies , meaning that only exactly one of the two

conditions for a formula to be complete holds. These types that can be represented by a single formula

are called principal types.



Stone Space visual

Ok, so we know that atomic models only realize principal types. How does this make them barebones?

Well, take the sentence . We know that  is complete, which means that either  or 

. By soundness and completeness, we know that this is the same thing as saying  or 

. We know that  because  is consistent with , so some model of  exists where 

 is realized. As such, , meaning every model of  satisfies this type! By the definition of

atomic, though, atomic models only satisfy these types. They only only satisfy the required, mandatory

types that every model of  satisfies! The “barebones” descriptor really makes sense now, doesn’t it.

Saturated models
Ok, so now that we talked about the minimalist models, we should talk about the maximalist models.

These models contain everything they can possibly contain. Let’s try to workshop a definition for what

this should represent. Fix some model  of a complete theory . The first guess would probably be

something like, “the model  should realize every type  that is consistent with ”. If you know

any algebra, you probably can spot one reason why this notion could be strengthed though! Not all



elements  can be pinned down by just logical formulas. For example, the number  or  are not

the solution to any polynomial (i.e. transcendental numbers cannot be expressed in the theory of fields).

But, if we still want our model to be as rich as possible, it should be able to make create types that use

these elements! To do this, we use a very common trick in model theory, that of expanding a model and

a language. For any finite subset , we can expand our model  to  in the language  as

follows. Let  (the language  but we add a new fresh constant for every

element ). For , we keep the model  but just interpret every  as . Now, we can

effectively talk about the elements of  in this language! Let  be the set of all sentences true in an

expanded model . We say that a model  is saturated if and only if for every finite subset 

, every type  in  consistent with  is realized in . Intuitively what this is

saying is, give me any type  (a list of requirements that we want our object to obey) that uses

finitely many elements from our universe  in a way that actually “makes sense” (it has to be

consistent with ), and I will find an element in  that realizes it. This communicates a “fullness” on

a much higher scale than the previous definition we tried out. Now, for a model to be saturated, it has to

contain types that even talk about elements in our universe that are not representable. This idea of

extending a model and a language to include elements from our universe is a very common idea in

model theory.

Examples
Ok, time for an example! It is actually the case that every complete theory has an atomic model and a

saturated model. The following example is thanks to Andrzej Ehrenfeucht. Take the theory and

language for a simple order, and add countably infinite many constant symbols. We then also add the

following axioms to the theory of simple linear order, 

The first axiom adds density, the second axiom ensures there is more than one element, and the third

and fourth axioms ensure there is no endpoints (i.e. no highest or lowest number). The fifth axiom is

not actually an axiom, but rather an axiom schema. It is just telling us that we append the set 

 to the theory. Take two different models 

where we define  and . Notice that  tends towards infinity while  tends towards .

We will show that  is atomic but not saturated, and  is saturated but not atomic.



To see that  is atomic, take any element . There are three cases. Assume  for some .

Then, the formula  actually represents a principal type. This is because if , then there is no

way there can be two different maximally consistent sets from this fact. Next, if , it is the case

that  represents a principal type. The way to intuitively think about this is that the elements

below  are indistinguishable. There is no formula that you can write that holds for some  that

doesn’t hold for . Similarly, if , then we know that there are is some  such that .

The formula  also represents a principal type for the same reason as the last case. So,

every element satisfies some principal type, meaning the model is atomic. The model is not saturated,

though, as we can create a type for the “top” element that is not a principal type. Take  to be the

empty set (we don’t need to talk about any elements in  to show it is not saturated), and take the set 

.  is consistent with  (using an appeal to the compactness theorem, which

I have not outlined here so you will have to take my word for it). But obviously,  is not a principal

type. Since our model is atomic, then, there is no rational number satisfying this model

Notice that this model is not atomic. To see this, take some rational number . Then, the only

formulas that  realizes are of the form  for some  (or more complex formulas than this that are

just conjunctions/disjunctions/negations of phrases like this). This formula isn’t complete though!

Notice that  doesn’t specify wether  or . So, we are done. This model is

saturated though! The reason for this is that since our sequence converges to an irrational number, there

is no way to “tear” apart the elements above the sequence and the elements below. Imagine our

sequence converged to a rational  instead. Then, we could easily describe an element above all

constants but below . But, because of the fact we cannot talk about  and the density of  in , there

is no way to talk about the “top” of the sequence without having some element come after.

Conclusion
If that was messy I apologize, I didn’t really proof read this as it was more just a demo of this website

(which I really like, it makes writing math on the web so easy). To recap, we have complete theories.

These theories pin down everything that should be true and everything that should be false. We call two

models elementarily equivalent if they make exactly the same formulas true, and models of complete

theories are exactly that. But, there are still differences in models that are elementarily equivalent! They

lie in the structure of the model, and how it satisfies types: does the model only have the mandated

types required by the theory, or is the structure much richer and we have an element that captures every

type. It should be noted that this presentation is a simplified version. In model theory, atomicity is not

just for types over one variable, but instead for types over any finite amount of variables. Similarly, the

notion of saturation presented here is what is called -saturation. There are stronger saturation

conditions for other ordinals. Finally, if someone reads this and has any questions, finds something

wrong, or has any suggestions, please comment. It seems that the ability of a comment section is a

really good feature of this site. Oh, and also everything I’ve learned has been thanks to the textbook 

Model Theory by Chang and Keisler and my DRP mentor. Thanks for reading my post!


	Some Intuitive Concepts in Model Theory
	Motivation
	Syntax versus Semantics
	Propositional Logic
	First Order Logic
	An example
	Types
	Atomic Models
	Saturated models
	Examples
	Conclusion



