The running maximum of geometric Brownian
motion
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Consider a geometric Brownian motion driven by the Stochastic Differential
Equation (SDE)

dSt = ,LLStdt + UStdBt, S(O) = S() (].)

where B; is a canonical Brownian motion on a probability space (2, F, F;, P).
The process S; is often used as the most basic model of stock prices in real time.
Here we will motivate the problem by considering .S; as the population of an
invasive species that has found its way into a new habitat where resources are
plentiful. The lack of scarcity means that the population will not come close to
the carrying capacity of its habitat on the time scale we are interested in, hence
we can use Eqn. (1) to model its growth instead of a more complicated logistic
type model.

The stochastic process
Sy = Soexp ((u—0*/2)t + 0 By), (2)

is the strong solution to the SDE in Eqn. (1). Since the deterministic growth rate
of Sy is u, it is natural to consider the quantity X; = e™#S,/Sy. X, is the ratio
between .S; and the population that would result from a model of deterministic
exponential growth. We may then ask, what is the probability that S; ever
becomes twice, three times, or r times as large as a its deterministically
governed counterpart? In other words, we would like to characterise the function

W(r,t) =P < sup X, > r) , (3)

0<s<t

paying especial attention to the limit lim;_,, ¢ (7, ). We can obtain an easy
bound on v by noting that X, is a non-negative martingale with
EX; = EXy =1 forall £, hence Doob’s martingale inequality for X; reads

EX,
T

1

;.

W(r,t) :P(sup X, >7’> <

0<s<t
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For » < 1 this bound is trivial, but,as we will see, it is the best constant-in-¢
bound for ¢ (-, ) when r > 1. For the time being we will focus on the case
r > 1.

If we define

log X
Y, = 08 2t = B, — ot /2 (5)
o
then ¢ is equivalently written as
1
¢<r,t>=P(sup Ys>£). (6)
0<s<t o

Here let us state two very useful results without proof. The first gives us the
density of the running maximum of Brownian motion. This is not so difficult to
prove, and I hope to make a separate post about it very soon. The second is a
simplified version of Girsanov’s theorem which will serve our current needs
well enough.

Theorem 1. (Running mazimum of Brownian motion) Let a > 0. Then the
joint density of By and M; = supy<,; Bs (the running mazimum of B,) is
given by

vi(a,z) = P(B; = x, My = a) = 22a—7) exp (M) . (7N

/o4l

To state the next result we introduce the notation (W), for the quadratic
variation of W; up to time ¢, and we write (W, Z), for the covariation of W, and
Zy

Theorem 2. (Girsanov) Let Wy be a continous and Fi-adapted stochastic
process. Set

Ew(t) = exp (W, — (W),/2).

Then there exists a measure Q) on (§2, F) with respect to which Wt = B; —
(W, B is a Brownian motion. Moreoever, Q) is aboslutely continuous with
respect to P with density $%|x= Ew(t).

Notice that if we set W; = 0B, /2, then

o ot

2<B>B>t: Py

<VV7B>t: 27

so that Y; = B, — (W, B);. We will now use these two results to calculate
¥ (r, t). First note that since %] 7> 0as. forall ¢, P < () and hence, by the
Radon-Nikodym theorem, % |7, exists and is given by

dP ( dQ

@‘}}: dF|ft> = exp (=W, + (W)/2).

Setting a = log(r)/o we have



¢<T7 t) =E" (H{Mt>log(r)/0}) <8)

dP
— B9 (H{Mt>log Y/o} dQ) 9)

/ / w(u,y) exp (—oy/2 — o°t/8) dydu, (10)

where in the last equality we have used the fact that v;(a, ) is the joint density
of M, and Y; under () (since Y is a BM under Q).

Below is a plot of the analytic solution from Eqn. (10) in the case » = 10,0 =1
with numerical results obtained by sampling the process Y; at regular intervals.
The numerics systematically underestimate the true probability because
sampling the process underestimates the maximum Mj;. This raises another
question: Does the discrete time process Yxa¢, £ € IN converge to Y;? In what
sense? And how quickly? A topic for another day.
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Plots of v (r,t) with associated numerics marked by triangles of the same colour.
We can see that 1(r, t) is, of course, non-decreasing: If at time ¢, M, has had an
excursion outside of [0, log r] then what happens later doesn’t matter. If it has
not had such an excursion, then it may do in the future. The concavity of ¢ (r, )
is intuitively explained when we remember that B, ~ v/t for long times, hence
Y, ~ —ot/2 as t — oco. So if the event {sup, M; > a} is observed then M,
probably exceeded a at some moderately small time. Indeed, it appears from the
plots that ¢(r,t) — 1/r as t — oo. To see that this holds for all » > 0 write

W(r,t) = /OO /u v(u,y) exp (—oy/2 — o°t/8) dydu (11)
/ / 21; _753 U2 o (— gy /2 — 0%)8) dydu (12)

2t

= / / 22u—yle™ ﬁm exp{— ly+ot/2 = 2u) } dydu. (13)



We have skipped a few steps in arriving at the last equality, but these steps just
involve completeing the square inside the exponential which is standard. We will
now cheat a little by using Mamthematica to evaluate this last integral, which

gives
2 _ —ou 2_9 2
W(r,t) / / 4 t3 ———————exp{— v+ Utét v) }dydu (14)
2a + ot 1 2a + ot
= —e¢ 2 —d, — -0, 15
 ( (zf)>2<2@) 1
1 <2 o, <—210g(r)/0 + Ut)> B lq)c <210g(7’)/0 + at) (16)
"o 2V/2t 2 2v/2t
where ®.(z) is the complementary error function
2 o0
D.(z) = ﬁ/; "1 du. (17)
Since lim, o, ®.(z) = 0, the limit
, 1
tlir& ¢(T, t) - ;7 r>0 (18)

falls out easily from Eqn. (16). We will leave it to the reader to check that v is
an increasing function of ¢. The monotonicity of ¢ (r, -) and the limit

lim; o 9(r,t) = 1/r together imply that the bound in Eqn. (4) is the best bound
that is constant in ¢.

We can also get a handle on the rate of convergence in Eqn. (18) by using the
well-known Mill’s ratio inequalities,

2 i 2 2 2
—x4/2 o —z 1
it | < Ble) < mme (19)
forall z > 0. Let
+2log(r)/o + ot
B 2/2t (20)

and apply Mill’s inequalities to Eqn. (16) to find

1 2 1 ) 1 2 ¢ 1

— 12— -q2/2\__ - _‘I+/2< < —|2— = —q2/2 )\ _ =~ __

2r < q_ﬁe ) q+ﬁe virt) 2r 7r1—|—q3€ wl-
(21)

(0%t + 8logr + log” T)) Eqn. (921) implies that

i 2
Since ¢y = o

2f
|th(r, t) — 1/r|~ e=7"t/t. So larger values of o will result in faster convergence

to the limit; see the figure below.



[ R S e S (S S S S T
5 10 15 20

Plots of (5, t) for different values of ¢. Solid lines indicate the analytic

expression for ¢ (5, t), dots of the associated colour indicate numerics. Larger
values of ¢ result in faster convergence.
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