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Consider a geometric Brownian motion driven by the Stochastic Differential

Equation (SDE)

where  is a canonical Brownian motion on a probability space .

The process  is often used as the most basic model of stock prices in real time.

Here we will motivate the problem by considering  as the population of an

invasive species that has found its way into a new habitat where resources are

plentiful. The lack of scarcity means that the population will not come close to

the carrying capacity of its habitat on the time scale we are interested in, hence

we can use Eqn. ( ) to model its growth instead of a more complicated logistic

type model.

The stochastic process 

is the strong solution to the SDE in Eqn. ( ). Since the deterministic growth rate

of  is , it is natural to consider the quantity .  is the ratio

between  and the population that would result from a model of deterministic

exponential growth. We may then ask, what is the probability that  ever

becomes twice, three times, or  times as large as a its deterministically

governed counterpart? In other words, we would like to characterise the function

paying especial attention to the limit . We can obtain an easy

bound on  by noting that  is a non-negative martingale with 

 for all , hence Doob’s martingale inequality for  reads
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For  this bound is trivial, but,as we will see, it is the best constant-in-

bound for  when . For the time being we will focus on the case 

.

If we define 

then  is equivalently written as 

Here let us state two very useful results without proof. The first gives us the

density of the running maximum of Brownian motion. This is not so difficult to

prove, and I hope to make a separate post about it very soon. The second is a

simplified version of Girsanov’s theorem which will serve our current needs

well enough.

To state the next result we introduce the notation  for the quadratic

variation of  up to time , and we write  for the covariation of  and

Notice that if we set , then 

so that . We will now use these two results to calculate 

. First note that since  a.s. for all ,  and hence, by the

Radon-Nikodym theorem,  exists and is given by 

Setting  we have 



where in the last equality we have used the fact that  is the joint density

of  and  under  (since  is a BM under ).

Below is a plot of the analytic solution from Eqn. ( ) in the case 

with numerical results obtained by sampling the process  at regular intervals.

The numerics systematically underestimate the true probability because

sampling the process underestimates the maximum . This raises another

question: Does the discrete time process  converge to ? In what

sense? And how quickly? A topic for another day.

Plots of  with associated numerics marked by triangles of the same colour.

We can see that  is, of course, non-decreasing: If at time ,  has had an

excursion outside of  then what happens later doesn’t matter. If it has

not had such an excursion, then it may do in the future. The concavity of 

is intuitively explained when we remember that  for long times, hence 

 as . So if the event  is observed then 

probably exceeded  at some moderately small time. Indeed, it appears from the

plots that  as . To see that this holds for all  write 



We have skipped a few steps in arriving at the last equality, but these steps just

involve completeing the square inside the exponential which is standard. We will

now cheat a little by using Mamthematica to evaluate this last integral, which

gives 

where  is the complementary error function 

Since , the limit 

falls out easily from Eqn. ( ). We will leave it to the reader to check that  is

an increasing function of . The monotonicity of  and the limit 

 together imply that the bound in Eqn. ( ) is the best bound

that is constant in .

We can also get a handle on the rate of convergence in Eqn. ( ) by using the

well-known Mill’s ratio inequalities, 

for all . Let 

and apply Mill’s inequalities to Eqn. ( ) to find 

Since , Eqn. ( ) implies that 

. So larger values of  will result in faster convergence

to the limit; see the figure below.



Plots of  for different values of . Solid lines indicate the analytic

expression for , dots of the associated colour indicate numerics. Larger

values of  result in faster convergence.
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