

Connections and General Structures on Manifolds

JellyShark_aq · 4 Jan 2026

Connections and General Structures

Connections on a Manifold with Vector Bundles

Definition 1. A (linear, affine) **connection** ∇ on a manifold M is a connection on TM i.e. $\forall X, Y \in \mathfrak{X}(M)$, we have (an \mathbb{R} -bilinear) $\nabla_X Y \in \mathfrak{X}(M)$ satisfying

$$\nabla_{fX} Y = f \nabla_X Y + (Xf)Y, \quad \forall f \in C^\infty(M). \quad (1)$$

In this case, $\nabla_X Y$ is the **covariant derivative** of Y along X .

$$\begin{cases} \nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M), \\ \nabla_X : \mathfrak{X}(M) \longrightarrow \mathfrak{X}(M), \quad X \in \mathfrak{X}(M). \end{cases}$$

Remark. There are some basic concepts to be stated for connections/covariant derivatives.

1. Lie derivative is not a covariant derivative since $\nabla_{fX}Y = f\nabla_XY$ but $L_{fX}Y = fL_XY - (Yf)X$.
2. If ∇ and ∇' are connections on M , then $Q := \nabla' - \nabla \in \Omega^1(M, \text{End}(TM))$ is a 1-form with values in the bundle $\text{End}(TM)$.ⁱ For all $X, Y \in \mathfrak{X}(M)$, $f \in C^\infty(M)$, write $Q(X, Y) = \nabla'_X Y - \nabla_X Y$. Then $Q(fX, Y) = fQ(X, Y)$ and

$$Q(X, fY) = (f\nabla'_X Y + (Xf)Y) - (f\nabla_X Y + (Xf)Y) = fQ(X, Y).$$

3. In local coordinates (x^μ) on M , writeⁱⁱ

$$\nabla_{\partial_\mu} \partial_\nu = \Gamma_{\mu\nu}^\lambda(x) \partial_\lambda,$$

where $\Gamma_{\mu\nu}^\lambda$ are **Christoffel symbols** of ∇ .

If $x = x^\mu \partial_\mu$, $Y = Y^\nu \partial_\nu$, then

$$\nabla_X Y = X^\mu (Y^\nu \nabla_\mu \partial_\nu + (\partial_\mu Y^\nu) \partial_\nu) = X^\mu (\partial_\mu Y^\lambda + \Gamma_{\mu\nu}^\lambda Y^\nu) \partial_\lambda.$$

In tensor calculus we write

$$X^\mu Y^\lambda_{;\mu} \partial_\lambda,$$

where

$$Y^\lambda_{;\mu} := \partial_\mu Y^\lambda + \Gamma_{\mu\nu}^\lambda Y^\nu.$$

Physicists use this notation as an analogy between covariant derivative and ordinary partial derivatives:

$$Y^\lambda_{..} = \partial_{..} Y^\lambda.$$

In the previous paragraphs we say that a connection on a manifold is a “connection on its tangent bundle”, or the difference of two connections is an “1-form with values in the bundle $\text{End}(TM)$ ”. These are the concepts in vector bundles, a special type of fibre(fiber) bundles.

Definition 2. A (complex/real) **vector bundle** over a manifold M is a manifold E with a projection $\pi : E \rightarrow M$ s.t.

1. $\forall p \in M$, $E_p := \pi^{-1}(p)$, the **fiber** of p , is a complex/real vector space of dimension r and
2. $\forall p \in M$, \exists open neighborhood $U \subset M$ containing p s.t. \exists diffeomorphism $\psi_U : \pi^{-1}(U) \rightarrow U \times \mathbb{K}$ ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}) and
3. $\forall a \in U$, $\psi_{\pi(a)} : \pi^{-1}(a) \rightarrow \{a\} \times \mathbb{K}$ is a linear isomorphism.

Remark. The transition map on vector bundles are given as follows. If $V \subset M$ is another open neighborhood of p with $\psi_V : \pi^{-1}(V) \rightarrow V \times \mathbb{K}^r$, then $\forall q \in U \cap V, \exists g_{VU} : U \cap V \rightarrow \text{GL}(r, \mathbb{K})$ s.t.

$$\begin{aligned} \psi_V \circ \psi_U^{-1} : (U \cap V) \times \mathbb{K}^r &\rightarrow (U \cap V) \times \mathbb{K}^r \\ (\alpha, v) &\mapsto (\alpha, \alpha \cdot \tau(\alpha)v) \end{aligned}$$

Definition 3. If (E, π, M) is a vector bundle, a **section** is a map $s : M \rightarrow E$ s.t. $\pi \circ s = \text{id}_M$. Let $\Gamma(M, E)$ or simply $\Gamma(E)$ denotes the space of sections.

Remark. In particular, consider TM being a real vector bundle over M , its section $\Gamma(TM)$ is the space of vector field $\mathfrak{X}(M)$.

Definition 4. A **connection** ∇ on a vector bundle $\pi : E \rightarrow M$ is an \mathbb{R} -linear operator

$$\begin{aligned} \nabla : \mathfrak{X}(M) \times \Gamma(E) &\rightarrow \Gamma(E) \\ (X, s) &\mapsto \nabla_X s \end{aligned}$$

satisfying

$$\begin{cases} \nabla_{fX}s = f\nabla_Xs \\ \nabla_X(fs) = f\nabla_Xs + (Xf)s \end{cases}$$

for all $X \in \mathfrak{X}(M)$, $s \in \Gamma(E)$ and $f \in C^\infty(M)$.

Fact 1. If E and F are vector bundles over M , then so are

$$E^*, E \oplus F, E \otimes_{\mathbb{K}} F, \text{Hom}_{\mathbb{K}}(E, F), \text{End}_{\mathbb{K}}(E), \bigwedge^k E$$

with

$$(E^*)_p, E_p \oplus F_p, E_p \otimes_{\mathbb{K}} F_p, \text{Hom}_{\mathbb{K}}(E_p, F_p), \text{End}_{\mathbb{K}}(E_p), \bigwedge^k E_p.$$

In particular, $\Gamma(\bigwedge^k T^*M) = \Omega^k(M)$.

Definition 5. if $\pi : E \rightarrow M$ is a vector bundle, a k -form with values in E is a section of $(\bigwedge^k T^*M) \otimes_{\mathbb{R}} E$. We write $\Omega^k(M, E) = \Gamma((\bigwedge^k T^*M) \otimes_{\mathbb{R}} E)$.

Remark. Connections ∇^E on E and ∇^F on F naturally induce connections on

$$E^*, E \oplus F, E \otimes_{\mathbb{K}} F, \text{Hom}_{\mathbb{K}}(E, F), \text{End}_{\mathbb{K}}(E), \bigwedge^k E$$

by Leibniz rule.

Example 1. Let $X \in \mathfrak{X}(M)$ and $s \in \Gamma(E)$.

- $\alpha \in \Gamma(E^*)$, then

$$(\nabla_X^{E^*} \alpha)(s) = X(\alpha(s)) - \alpha(\nabla_X^E s).$$

- $t \in \Gamma(F)$, then

$$(\nabla_X^{E \otimes F})(s \otimes t) = (\nabla_X^E s) \times t + s \otimes (\nabla_X^F t).$$

- $A \in \Gamma(\text{End}(E))$, then

$$(\nabla_X^{\text{End}(E)} A)(s) = \nabla_X^E(As) - A(\nabla_X^E s).$$

Given a connection ∇ on TM , then connection on T^*M (also denoted by ∇) is given by

$$(\nabla_X \alpha)(Y) = X(\alpha(Y)) - \alpha(\nabla_X Y), \quad (2)$$

for all $X \in \mathfrak{X}(M)$, $\alpha \in \Gamma(T^*M) = \Omega^1(M)$ and $Y \in \mathfrak{X}(M)$.

In local coordinates (X^μ) , $\nabla_\mu dx^\lambda = -\Gamma_{\mu\nu}^\lambda dx^\nu$. If an 1-form $\alpha = \alpha_\lambda dx^\lambda$ locally and $X = X^\mu \partial_\mu$, then $\nabla_X \alpha = X^\mu (\partial_\mu \alpha_\nu - \Gamma_{\mu\nu}^\lambda \alpha_\lambda) dx^\nu$. Similarly in tensor calculus,

$$\alpha_{\nu;\mu} := \partial_\mu \alpha_\nu - \Gamma_{\mu\nu}^\lambda \alpha_\lambda.$$

Generally, if $B \in \Gamma\left(\bigotimes^k TM \otimes \bigotimes^\ell T^*M\right)$,

$$B = B^{\lambda_1 \dots \lambda_k}{}_{\nu_1 \dots \nu_\ell} \partial_{\lambda_1} \otimes \dots \otimes \partial_{\lambda_k} \otimes dx^{\nu_1} \otimes \dots \otimes dx^{\nu_\ell},$$

then

$$B^{\lambda_1 \dots \lambda_k}{}_{\nu_1 \dots \nu_\ell ; \mu} = B^{\lambda_1 \dots \lambda_k}{}_{\nu_1 \dots \nu_\ell , \mu} + \sum_{i=1}^k B^{\lambda_i \dots \underset{i\text{-th}}{\rho} \dots \lambda_k}{}_{\nu_1 \dots \nu_\ell} \Gamma_{\mu\rho}^{\lambda_i} - \sum_{j=1}^\ell B^{\lambda_i \dots \lambda_k}{}_{\nu_1 \dots \underset{\sigma}{\sigma} \dots \nu_\ell} \Gamma_{\mu}^{\lambda_i}$$

Definition 6. Let ∇ be a connection on a manifold.

1. The **torsion** T of ∇ is given by $T(X, Y) = \nabla_X Y - \nabla_Y X - [X, Y]$ and
2. the **(Riemann) curvature** R of ∇ is

$$R(X, Y)Z = ([\nabla_X, \nabla_Y] - \nabla_{[X, Y]})Z$$

for all $X, Y, Z \in \mathfrak{X}(M)$.

Definition 7. The connection ∇ is **torsion free** if $T = 0$; ∇ is **flat** if $R = 0$.

Lemma 1. We have $T \in \Omega^2(M, TM)$ and $R \in \Omega^2(M, \text{End}(TM))$.

Skech of the proof.. Obviously both T and R are anti-symmetric.

We need to check that $\forall f \in C^\infty(M)$,

$$T(fX, Y) = f(T(X, Y)) = fT(X, Y)$$

which is clear; and

$$R(fX, Y)Z = R(X, fY)Z = R(X, Y)(fZ) = fR(X, Y)Z.$$

□

Remark. with the concept of torsion and curvature, we have

1. In local coordinates (x^μ) , if $T(\partial_\mu, \partial_\nu) = T_{\mu\nu}^\lambda \partial_\lambda$, then $T_{\mu\nu}^\lambda = \Gamma_{[\mu,\nu]}^\lambda$.ⁱⁱⁱ

Let $R(\partial_\mu, \partial_\nu) \partial_\lambda = R_{\mu\nu}^\rho \partial_\rho$, then

$$R_{\mu\nu}^\rho \partial_\lambda = \partial_\mu \Gamma_{\nu\lambda}^\rho - \partial_\nu \Gamma_{\mu\lambda}^\rho + \Gamma_{\mu\sigma}^\rho \Gamma_{\nu\lambda}^\sigma - \Gamma_{\nu\sigma}^\sigma \Gamma_{\mu\lambda}^\rho$$

or one can write it more compactly,

$$R_{\mu\nu}^\rho \partial_\lambda = \Gamma_{[\nu\lambda,\mu]}^\rho + \Gamma_{[\mu\sigma}^\rho \Gamma_{\nu]\lambda}^\sigma$$

where $[a \cdots, \cdots d]$ permutes the indices adjacent to the bracket only. (which are a and d in this case)^{iv}

2. In the above, the (Riemann) curvature is defined by the connection on TM , i.e. $R = R^{TM}$. Since $\nabla = \nabla^{TM}$ induces ∇^{T^*M} on T^*M and $\nabla^{\text{End}(TM)}$ on $\text{End}(TM)$, etc. We have $\alpha \in \Omega^1(M) = \Gamma(TM)$, $A \in \Gamma(\text{End}(TM))$,

$$\begin{cases} R^{T^*M}(X, Y)\alpha = ([\nabla_X^{T^*M}, \nabla_Y^{T^*M}] - \nabla_{[X,Y]}^{T^*M})\alpha \\ R^{\text{End}(TM)}(X, Y)A = [R(X, Y), A] \end{cases}$$

Furthermore, $R^{T^*M}(X, Y)\alpha = -{}^t R(X, Y)\alpha \in \Omega^2(M, \text{End}(T^*M))$.

Lemma 2. Let ∇, ∇' be connections on a manifold M . Let $Q(X, Y) = \nabla'XY - \nabla_XY$ for all $X, Y \in \mathfrak{X}(M)$. Then $Q \in \Gamma(M, \text{Hom}(TM \otimes TM, TM))$ and the torsions T, T' of ∇, ∇' satisfy

$$T'(X, Y) - T(X, Y) = Q(X, Y) - Q(Y, X), \quad \forall X, Y \in \mathfrak{X}(M).$$

In particular, ∇, ∇' has the same torsion if and only if $Q(X, Y) = Q(Y, X)$ for all $X, Y \in \mathfrak{X}(M)$.

Proof. From previous discussion we've shown

$$Q(fX, Y) = Q(X, fY) = fQ(X, Y) \text{ for all } X, Y \in \mathfrak{X}(M) \text{ and } f \in C^\infty(M).$$

Thus

$$T'(X, Y) - T(X, Y) = (\nabla'_X Y - \nabla'_Y X - [X, Y]) - (\nabla_X Y - \nabla_Y X - [X, Y]) = Q(X, Y)$$

□

Definition 8. Let $\gamma : \mathbb{R} \rightarrow M$ (or from an open interval $I \subset \mathbb{R}$ containing 0) be a smooth curve on a manifold. Let ∇ be a connection on M . The **parallel transport** of $X_0 \in T_{\gamma(0)}M$ along γ is a set $\{X_s\}$ s.t. $X_s \in T_{\gamma(s)}M$ and $\gamma'_{\dot{\gamma}(s)}X_s = 0$ for all $s \in \mathbb{R}$.

The curve γ is a **geodesic** on M if $\nabla_{\dot{\gamma}(s)}\dot{\gamma}(s) = 0$.

Remark. Here we give more notion on geodesics.

1. Note that $\dot{\gamma}(s)$ and X_s are on the the curve $\gamma(\mathbb{R})$, but $\nabla_{\dot{\gamma}(s)}X_s$ is well-defined by extending them to a neighborhood of the curve.
2. In local coordinates (x^μ) , γ is described by $\gamma^\mu(s)$. Then $X_s = X^\mu(s)\partial_\mu$ is a parallel transport of X_0 if $X^\mu(0) = X_0^\mu$ and $\frac{d}{ds}X^\lambda(s) + \Gamma_{\mu\nu}^\lambda(\gamma(s))\frac{d\gamma^\mu(s)}{ds}X^\nu(s) = 0$. In particular, γ is a geodesic if

$$\frac{d^2}{ds^2}\gamma^\lambda(s) + \Gamma_{\mu\nu}^\lambda(\gamma(s))\frac{d\gamma^\mu(s)}{ds}\frac{d\gamma^\nu(s)}{ds} = 0. \quad (3)$$

For small s , solution $\gamma^\mu(s)$ exists and is unique with the initial conditions $\gamma(0) \in M$, $\dot{\gamma}(0) \in T_{\gamma(0)}M$.

3. Another connection ∇' on M defines the same geodesic if and only if $Q(X, Y) = (\nabla'_X - \nabla_X)Y$ is anti-symmetric, $Q(X, Y) = -Q(Y, X)$, for all $X, Y \in \mathfrak{X}(M)$.

Corollary 1. *Among the connections on M that define the same geodesics, there is a unique one is torsion-free.*

Sketch of the proof. The uniqueness follows from the Lemma and Remark 3.

above. If ∇ is any connection on N , then ∇' is given by

$\nabla'_X Y = \nabla_X Y - \frac{1}{2}T(X, Y)$ is a torsion free connection with the same geodesics. \square

Torsion, Curvature and Bianchi Identity

Let ∇ be a connection on a manifold M . We have the torsion and connection curvature tensor

$$\begin{cases} T \in \Gamma \left(M, \text{Hom} \left(\bigwedge^2 TM, TM \right) \right), \\ R \in \Gamma \left(M, \text{Hom} \left(\bigwedge^2 TM, \text{End}(TM) \right) \right). \end{cases}$$

Now we have the identities

Theorem 2. Let T and R be the torsion and curvature tensor of a connection ∇ on a manifold M . Then

1. **1st Bianchi identity**

$$R(X, Y)Z + \text{c.p.} = T(T(X, Y), Z) + (\nabla_Z T)(X, Y) + \text{c.p.} \quad (4)$$

2. **2nd Bianchi identity**

$$(\nabla_Z R)(X, Y) + \text{c.p.} = R(Z, T(X, Y)) + \text{c.p.} \quad (5)$$

where c.p. denotes the cyclic permutations.

Corollary 3. If ∇ is a torsion-free connection on M , then for all $X, Y \in \mathfrak{X}(M)$,

$$\begin{cases} R(X, Y)Z + R(Y, Z)X + R(Z, X)Y = 0 \\ (\nabla_Z R)(X, Y) + (\nabla_X R)(Y, Z) + (\nabla_Y R)(X, Z) = 0. \end{cases} \quad (6)$$

Proof of the theorem.

1. We have

$$\begin{aligned} R(X, Y)Z + \text{c.p.} &= ([\nabla_X, \nabla_Y] - \nabla_{[X, Y]})Z + \text{c.p.} \\ &= \nabla_X \nabla_Y Z - \nabla_Y (\nabla_Z X - [Z, X] - T(Z, X)) - \nabla_{[X, Y]} Z + \text{c.p.} \end{aligned}$$

Note that $\nabla_X \nabla_Y Z - \nabla_Y \nabla_Z X + \text{c.p.} = 0$, thus we have (reordering X, Y, Z by cyclic permutations)

$$\begin{aligned} R(X, Y)Z + \text{c.p.} &= \nabla_Z [X, Y] - \nabla_{[X, Y]} Z + \nabla_Z T(X, Y) + \text{c.p.} \\ &= T(Z, [X, Y]) + \underline{[Z, [X, Y]]} + (\nabla_Z T)(X, Y) + T(\nabla_Z X, Y) \\ &= T(\nabla_X Y - \nabla_Y X - [X, Y], Z) + (\nabla_Z T)(X, Y) + \text{c.p.} \\ &= T(T(X, Y), Z) + (\nabla_Z T)(X, Y) + \text{c.p.} \end{aligned}$$

We have

$$\begin{aligned} (\nabla_Z R)(X, Y)Z + \text{c.p.} &= \nabla_Z (R(X, Y)) - R(\nabla_Z X, Y) - R(X, \nabla_Z Y) + \text{c.p.} \\ &= [\nabla_Z, R(X, Y)] + R(Z, \nabla_X Y - \nabla_Y X) + \text{c.p.} \\ &= \underline{[\nabla_Z, [\nabla_X, \nabla_Y]]} - [\nabla_Z, \nabla_{[X, Y]}] + R(Z, T(X, Y)) + [X, Y] \\ &= R(Z, T(X, Y)) - \underline{[\nabla_Z, [X, Y]]} + \text{c.p.} \end{aligned}$$

Note that

$(\nabla_Z \circ R(X, Y))W \equiv \nabla_Z (R(X, Y)W) - R(X, Y) \nabla_Z W \equiv [\nabla_Z, R(X, Y)]W$ and every canceling is due to Jacobian identity with cyclic permutations.

□

Remark. In local coordinates (X^μ) , the Corollay is

$$\begin{cases} R_{\mu\nu}{}^\rho{}_\lambda + R_{\lambda\mu}{}^\rho{}_\nu + R_{\nu\lambda}{}^\rho{}_\mu = 0 \\ \nabla_\lambda R_{\mu\nu}{}^\rho{}_\sigma + \nabla_\mu R_{\nu\lambda}{}^\rho{}_\sigma + \nabla_\nu R_{\lambda\mu}{}^\rho{}_\sigma = 0. \end{cases}$$

Definition 9. Let ∇ be a connection on a manifold M with (Riemannian) curvature (tensor) R . The **Ricci curvature (tensor)** of ∇ is given by

$$\text{Ric}(X, Y) := \text{Tr}(R(\bullet, X)Y), \quad \forall X, Y \in \mathfrak{X}(M). \quad (7)$$

Note that $\text{Ric} \in \Gamma(M, T^*M \otimes T^*M)$ (or $(TM \otimes TM)^*$).

Proposition 1. If ∇ is a torsion free connection on a manifold M , then for all $X, Y, Z \in \mathfrak{X}(M)$,

1. $\text{Ric}(X, Y) - \text{Ric}(Y, X) = -\text{Tr } R(X, Y).$
2. $(\nabla_X \text{Ric})(Y, Z) - (\nabla_Y \text{Ric})(X, Z) = \text{Tr}(\nabla_\bullet R)(X, Y)Z.$

Proof. By the Bianchi identities, we have

$$\begin{cases} R(\bullet, X)Y - R(\bullet, Y)X + R(X, Y)(\bullet) = 0 \\ \nabla_X R(\bullet, Y)Z - \nabla_Y R(\bullet, X)Z - (\nabla_\bullet R)(X, Y)Z = 0 \end{cases}$$

Then the result holds by taking the trace of both sides. \square

Remark. In local coordinates (x^μ) , $R(\partial_\mu, \partial_\nu)\partial_\lambda = R_{\mu\nu}{}^\rho{}_\lambda \partial_\rho$ implies $R_{\mu\nu}$ can represent the Ricci tensors since $R_{\mu\nu} := \text{Ric}(\partial_\mu, \partial_\nu) = R_{\lambda\mu}{}^\lambda{}_\nu$. Thus we have the **(contracted) Bianchi identities**:

$$\begin{cases} R_{\mu\nu} - R_{\nu\mu} + R_{\mu\nu}{}^\lambda{}_\lambda = 0, \\ \nabla_\mu R_{\nu\lambda} - \nabla_\nu R_{\mu\lambda} - \nabla_\lambda R_{\mu\nu} = 0. \end{cases} \quad (8)$$