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A Ghost Story-Gauge Fixing

The key question of this chapter is to figure out how to quantize a gauge theory.
The first instinct is that, can we obtain the correlation function, or the
propagator, as in scalar field theory? Unfortunately, the answer is no., at least not
so trivial.

Remark. Consider an Abelian gauge theory over Minkowski spacetime R"
with the Lagrangian density

1 1
LA) = =g P AeF = =g B B, F = d4,

for some A € Q'(R"). To obtain the propagator from £, we can consider the
equivalent quadratic form

1
Lo(A) = iA“(nWD — 0,0,)A”,

Note that £ and Ly differ by a total divergence, or [o, del = [, dzLy in
the sense of weak derivative. Thus the Euler-Lagrange equation is simply

(n,0— 0,0,)A” = 0.

However, this operator behaves badly. To obtain the propagator, we look at
momentum space by Fourier transform, which in this case, is the replacement

P.(vV—10,) = P,(k,) = —nuk* + k.k,,

where P, is the polynomial such that P,(v/=10,) = (1,0 —9,0,) and k* =
k,k*. 1f P,(v/—10,) has inverse then it must be of the form, in momentum
space representation,

an™” + bEMK”

for some constants a,b. Then we have
(—nlwk:2 + kuk,)(an”? + OK"KP) = on-

This implies
2
—ak”op + ak, k" = of,

which has no solution for a.


https://functor.network/user/3176/entry/1503
https://functor.network/user/3176/entry/1503
https://functor.network/user/3176/entry/1503
https://functor.network/user/3176

This means the gauge theory itself has way to many degeneracies so that its
impossible to get a unique propagator alone from the Lagrangian L.
Geometrically, we have infinitely many gauge orbits in the space of fields. Every
orbit represents the same classical solution of the theory, one has to choose a
specific orbit then the quantization is consistent. That is,

Proposition 1. For the Lagrangian density
1 1
,CO(A) = —§F/\ xF = —ZFMVFMV, F = dA,
the following modified Lagrangian density

1
L(A) = Lo(A) — —(0,A)?
(A) = Lo(A) = 5-(0,4%)
for some constant o has the momentum representation of the inverse of the
propagator:
1 k.k,
DonlB)a = = (1 + (0= ).

The proof is just direct computation. Here, we utilize the concept of Lagrange
multiplier method, the additional term (9, A4*)?/2« does not affect classical
solution as long as we choose the Lorentz gauge 9, A* = 0.

Remark. In literature we often encounter the two cases

. my

lim D, (k) = ———=—, Feynman gauge,
li D (k) Y Pl s
) N — kuky, /K

lim Dy, (k)o = —%, Landau gauge.

Now, we show that after choosing a special gauge fixing condition, the
propagator is well-defined, and the presumably quantum theory. However, does
this procedure depends on the choice of gauge fixing?

Faddeev-Popov Construction

Remark. Without specification, we denote a classical gauge theory by
(P,M,G, Fuy, S), a principal G-bundle M over spacetime M with classi-
cal (gauge invariant) action S defined on the space of fields Fj;. Sometimes
we denote Fy; x ad(P) or Fyr x Q(M, g) to emphasize the space of gauge
fields ad(P) and matter fields Fys. The space of gauge fields ad(P) is also
frequently denoted by .A. The group of gauge transformation is denoted by
g.

From the path integral perspective, integrating over the space of gauge fields

A = ad(P) results in "unregularizable" infinite, since the gauge redundancy is
truly uncountable infinite: at every point = € M, we multiply a factor vol(G). In
other words, suppose there is a formal Haar measure defined on G, the

reasonable path integral is of the form



Dev-18 — ! / Doy T8I0
A/G vol(G) J 4

here D¢ is the pushforward measure of D¢ and S = 7*S where
T A— A/G.

Remark. In finite-dimensional case, we have the following well-defined math-
ematical objects: (see b)

e Space of gauge fields A, which is modeled by a finite-dimensional affine
space;

e Group of gauge transformations G, which is modeled by a finite-
dimensional Lie group G;

e Lie group action G ~ A generated by fundamental vector fields {v, €
X(A)|a=1,--- ,dimLie(G) = n};

e S € C>®(A)Y, a g-invariant function and p € QIMA(A)¢ a G-invariant
top form as the integral measure.

Then we have the following identity

eV S —vol(@) [ jieVTS, (1)
A AJG

where S = 7*S and the measure it is defined such that ¢,t, 1 -ty = 7*p,

here m: A — A/G and ¢; = 1,,.

K3

We first see how physicists utilize such ideas in practice, 8, 4.

Definition 1. Let F : A — Lie(G)' be a smooth map with the following
properties:

e ( is a regular value of F.
e ['71(0) C A intersects every G-orbit transversally, exactly once.

Then We say the space of gauge fields satisfying the gauge-fixing condition
F=0.

Definition 2. Given the gauge-fixing condition F' = 0, we define the
Faddeev-Popov determinant by the formal functional integral:

1
Ko = [, PoF(- ) @)

where Dg is the formal Haar measure on G, 0 here is the formal Dirac dis-
tribution on G and ¢ - A is the group action fo gauge transformation group
G acts on gauge fields A.

Remark. We assume the solution ¢ to the equation F(g- A) = 0 is unique
for every fixed A € A.

Lemma 1. The Faddeev-Popov determinant is invariant under gauge trans-
formations.



Proof. Since Dy is the (formal) Haar measure, we have, for all h € G,
Dg = D(gh), hence

1
A /g Dys(Flgh - A)) = /g D((F(gh- 4) = o

O

Our aim is the replace the integration domain by restriction to the hypersuface
F~1(0). This is doable by the following thoerem.

Theorem 1. If the action S is gauge invariant, then the functional integral

1
DupeV " Slr10 = —__7 3
/ o DHre 7 3)

where Dur is the induced measure on F~1(0). The partition function
Z = / DAY~
A

is defined with respect to gauge invariant measure DA.

Proof. By definition, we have 1 = Ap[A] fg Dygd(F(g- A)), then by gauge
invariance,

7= / DA (/ Dg5(F(g.A))AF[A]) F(A)e/ TS
/ Dy / DAS(F(g- A))Ap[A]f(A)eY 1514
/Dg/DQ AVS(F(g- A)Aplg- Alf(g- A)eV 1594l
/ P / D(A)S(F(A)Ap[A'] f(A)ey TSI
= vol(G) /A D(A)S(F(A)AR[A]f(A)ey 5]

Note that the first integral has no The rest is to prove that

/ DAS(F(A))Ap[AleV=1514] — / Dpupe’ 10,

A F=1(0)

It suffices to prove that Ag[A] is the (formal) Radon-Nikodym derivative
DA/Dup.

Fix a gauge field A € A, we parametrize the neighborhood of the orbit through
Aby A= X\T,el'(M,g),{T,|a=1,---,dimg} is a basis of g, and
transverse coordinate y on the slice. Locally we write A(y) — g, - A(y) with
A(0) = A and go = e € G. Consider the variation of F'(g, - A) with respect to
A, say

F(gy - A) = F(A) + M)+ O(| "),



where M 4 is the linear map with the components

(Ma)e = 2 F(gy- A)

X A=0
Then we have the identity
1
DN(F(gy-A) = ————
Lie(G) (Flgr-4) |det M|
and hence
1
Dgé(F(g-A)) =
[ Postrte- ) = 5

(up to normalization). We conclude Ar[A] = det M4. O



Remark.

e The linearization of the Haar measure reads as follows: Since g, =
exp(N), Dg = D(exp(A)) = u(A)DA for some non-vanishing scaling
factor p(A) by pushforward of A — g, and the left-invariance of the
Haar measure. Then we have

/Dgé(F(g - A)) =/ DA(A)S(F(A) + MaX + O(|A[*))
g Lie(G)
= (/ DAU(N)I(F(A) + MAA)) + O(INP)
Lie(G)

While F(g-A) = 0 has a unique solution for ¢ € G, say h. The
invariance of Haar measure enable us to consider F(g - A) = 0 around
g = e by translation by A~! under the integral sign. Then for F/(gy-A) =
0 <= F(A) + M\ +O(|A||) = 0, F(A) = 0 implies we only consider
A =0, that is,

_ w0
/g Dys(F(g- A)) = /L o DAY =

e Let’s translate that variation into geometric language. The gauge group
G acts on A. Its infinitesimal action at A is a linear map

PA : Teg — TA.A, a DAOé

where D4 is the covariant derivative with respect to A.

At A, the composition

Lie(G) = T.G 2% Ty A 24 Ty 4 Lie(G) = Lie(G)

is how the motion along the gauge orbit away from the slice F~1(0).
Then the determinant det(dF4 o p4) is the Faddeev-Popov determi-
nant. Formally we write

dF[g - Al

A F[A] = det (59

(4)

g=e

e The argument above is formal: it uses infinite-dimensional determi-
nants and a formal factorization of the Jacobian. In practice these
determinants must be regularized (zeta/heat-kernel/lattice regulariza-
tion, etc.) and signs/phases must be handled carefully; these issues
lead to ghost fields when one exponentiates the determinant.

e Global issues such as Gribov copies (more than one intersection of
an orbit with £71(0)) mean the simple formula needs modification in
those cases; one may then restrict to a fundamental domain or include
an appropriate summation/counting factor.

Now we conclude that



Theorem 2. From the above assumption, we have

Dfleﬁg = /

Dpupe? " Slr100) = / DAS(F(A))Ap[A]ev15A]
F-1(0) A

N ~ (5)
where S and DA are the induced action the induced functional measure on
A/G from DA on A. Note that the equation holds independent of the choice
of F.

A/G

Now we express the gauge invariant partition function in the form of functional
integral on A and a geometric interpretation on the slice of gauge orbit F~1(0).
For computation purpose, we wish to make the integral
/ DAS(F(A)Ap[A] ¢V~1514] more convenient to evaluate. This means we

A

have to rewrite the Faddeev-Popov determinant and the Dirac delta distribution.

Remark.

1. Recall that in Grassmannian/Berezinan integral, the determinant of a
linear map M can be expressed as

det M = / dvdv* exp (v —1 (v*, Mv))
n(vev:)

where (-, -) is a pairing of V' and V*.

2. Recall that in distribution theory, the Dirac delta distribution admits
a Fourier transform representation. Let f : V — V be a sufficiently
well-defined function on some Euclidean vector space V

6(f(z)) = /V * dkeV—1kf (@)

with some normalized Lebesgue measure dk on V*.
We can, in fact immediately, deduce the following conclusion.

Theorem 3. From the gauge invariant partition function, we have the func-
tional integration equation:

/ DAS(F(A))Ap[AleV=154 — / DADEDEDEexp (v 1S pp| A,
A AXS* XII(BHG*) ( )
6

where & = Lie(G) and the action Spp is
Srp[A;b,¢,c] = S[A] + (b, F(A)) + Sglc, ] (7)
and the ghost action Sy)c, c| is

Sale.cl = (e.(dFaopa)c) (8)

Proof. See the rigorous finite-dimensional version proof of the theorem from
Theorem 4.1.4, 5. O



Example 1 (Section 4.1.3, 5). Consider the Yang-Mills theory with a com-
pact Lie group G, i.e. (M,g): (pseudo-)Riemannian manifold,

(F, Sym) = (QI(M,g),%LtrAd(FA/\*FAO

and Fy = DyA € Q*(M, g) for A € F and * is the Hodge star operator with
respect to g. We choose the gauge-fixing condition to be F(A) = d* A, then
the Faddeev-Popov endomorphism dFy = d x D, and the gauge-invariant
partition function reads

7 = / DADVDcDE exp (v —1Spp),
Fx&*x(gbg*)

where

SFP[A,b,E,C]:SYM[A]+ / <b,d*A>g—|— / <E,d*DAC>g.

Definition 3. We can interpret the quantum gauge field theory lives in the
extended field space

Ax B xII(GdB"), & =Lie(G), 9)
with the extended fields:

e The Faddeev-Popov ghost ¢, which is a g-valued scalar field with
fermionic statistics.

e The anti-ghost ¢, which is a g*-valued scalar field with fermionic statis-
tics.

e The auxiliary field b, which is g*-valued scalar field with bosonic
statistics.

No Ghosts in QED

In this section, we will attempt to give a formalism on quantum electrodynamics
as a simplified model of quantum gauge theory with ghosts. We follow the
derivation of Chapter 12, 4.

Lemma 2. Let F' be a gauge-fizing condition in the sense of the previous
section. Choose f € & so that H(A) := F(A) — f is another gauge-fixing
condition. Then the gauge invariant partition function reads

7= / DADDeexp(VI(SIA] + Splendl + SylA)),  (10)
AxTI(BH6*)

where the gauge fixing terms Sy reads
SylA] = G(F(A)), (11)

where G : & — C is some smooth functional.



Proof. Note that Ay [A] = Ar[A]. We have

| PANHAB(F(A)=Pexp(vTIS(A) = [ PAAAGEA) exp(V=TS]

because the integral is independent of the choice of the gauge-fixing condition.
Then Z is independent of f, we can consider

:/@DfG(f)Z:/@DfG(f)/ADAAF[A](S(F(A)—f)eXP(\/__ls[A])
up to normalization. Thus
_ / DIG(S) /A DAAR[AS(F(A) — f) exp(v/~15[A))
:ADALDfG(f)AF[A]é(F(A)—f)exp(V——lb”[A])
_ /A DAA R A] exp(vV=TS[A) / DIG(f)3(F(A) - f)
- /A DAAF[A]exp(vV—1S[A])G(F(A))

Expanding A r[A] with ghost fields and we have the result. O

Remark. In QED, a common choice of G is G(F(A)) =
—V/—1 [, d"x(8,A")?/2¢, & € R, and F(A) = ,A*. This choice comes from
dimensional analy51s and the following fact: Let Lyp = Lqrp + G(F(A)),
then the equations of motion of Lpp imply that if F/(A) = 0 somewhere
than F'(A) = 0 identically.

Corollary 4. With the choice G(F(A)) = —V/=1(9,A")?/2¢, & € R, the
partition function of QED becomes

-/ pAexp<¢——15QED—§ [ aa@uarr) a2

up to normalization constant.

Proof. Tt suffices to prove that the Faddeev-Popov determinant is independent of
the gauge field. Recall the gauge transformation of U(1)-gauge field is
A — A+ df for some smooth function f. Then

Ap[A] = det 2 0,(f - AY

of "

= det 0,0".
f=0

O

The results shows that the Faddeev-Popov determinant is a functional
determinant of Laplacian operator. This means the ghost action is a free field
theory without coupling and interactions with matter fields. We conclude that
QED is a no ghost gauge theory.



Finite-dimensional Justification

In this section, we give a finite-dimensinoal justification of what we done in the
Faddeev-Popov procedure. To set up, we consider the following.

* A (compact) Lie group action G ~ A on some (affine) C-vector space A
such that

T A— A/G
is a trivial principal »-bundle, i.e. 4 déﬂ G x A/G

* The partition function Z = Zg is defined as in (1), i.e.

Zs= | pe¥=" = vol(G) fieV=1S,
A A/a

and the notations are given as above.

* The gauge-fixing condition is the same except now we consider the level
set F~1(0) intersects every G-orbit transversally N -times for some fix
N > 1. The exact value of N depends on the topology of G and X/G (5).

Now the integral on the quotient X /G can be rewritten as

1
ZS = L<G)/ (ﬂ'*lu/)e\/jl‘st*l(O)
F=1(0)

N

- %@) / AF'A o N dFY™ A 74§ (F)eV =18 (13)
A

— L)%[G) F*éo(e\/__lsﬂ*u)

where F*§y € D’'(g) is the Dirac delta distribution ¢, € D’(g) pull-backed by F'.
Note that for a k-cycle C' C X with k£ < dim X, we have the distributional form
SdmX—k ¢ OF(X)" defined by

5gimX’k Cw / wlc-
c

/w|C:/5(;/\w
C X

for computational convenience.

We also denote this by



Lemma 3. Let Ap be a function on A such that, note that F' =) F°T,
with F* € C*(A),

dFEY A+ NAFT™ A 7% = Ap - . (14)
Then we have the identity
Ap(z) = dety(dF, o d®. ;) (15)

where ® : G x A — A is the group action.
Remark. Note that the map FP : dF, od®,., € End(g) and

dPe,q dF;

FP.g —T,A—g.
In components, we have
FP(z)y = (dF* (), vs)y = vo(F)l2

where (-, -) - denotes the pairing (induced by the bi-invariant metric on G' or
g) on g and g*.
It is also clear that
dOF(g-x) )
t=0
where g; is a smooth curve on G parametrized by t € R with gy = e € G.

Ap(z) = det, 50

d
=dety | =F(g;-

Proof of the Lemma. Note that the non-degeneracy of F'P is equivalent to
F~Y(F(z)) C A intersecting the G-orbit through z transversally. If the
intersection is non-transversal, then dF' A - - - A dF'4™9 A 7% = 0 and the

statement is trivial.

Let V =imd®,., = span{v,(z)} C T, A be the tangent space to the G-orbit
through z. Consider the annihilator subspace Ann(V') C T A and its basis, say
al,--- o, ¢ =dim A — dim G = dim(A4/G). Then

{dFY(x), - ,dFim8(x) al,--- o'} isabasis of TFA. W.L.O.G. we may
assume = dF' A -+ AdFYm8 A b A - A of By orthogonality of v,’s and

a™’s we have, recall that ¢, = ¢,,,

dimg

ldimg " " - LI b = Z (—1)° H <dF“,vU(a)>g alA--nat = (detyFP)a’ A
a=1

0E€Sdim g
Wedging with dF'*’s we conclude the result. O

Now the following equation is meaningful.



Theorem 5 (Theorem 4.1.3, 5). Following the above notation, we have

75 = "9 / u3(8) Ape? 1S = VUG / podXdedzey ~TSrrlee
N A N Axg*xII(gbg*)
(16)
where
Serlw A, e,d) = Sla] + (0, F(x)}, + (e FP(x)e), (1)

Remark. Here we state the Fourier transform and the Grassmannian integral
representation precisely.

e The Dirac delta distribution

§(F(z)) = / dheVTNE@)g
g*

e The Faddeev-Popov determinant

where dede = []8™0 degde®.

a=1

Note that we choose a different normalization from the reference or other
literature because the overall scaling the the final path integral is irrelevant.

1. In fact, it should be Ap[A] = DA/(Dg ® Dur).<
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