Notes on Partition Functions on the Riemann
surfaces
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Partition Function on the
Riemann surfaces

In this note we follow Lecture 1, part 3 of volume 2 of (Deligne et al. 1999) to
calculate Euclidean partition function of free scalar fields with periodic

boundary conditions.
The field theory datum (Fy, S, X) are the following
* Y is a compact Riemannian manifold. (The metric is irrelevant here)

* The space of fields Fy; is a function class (smooth, distributional, Sobolev,
etc.) Map(3, S') defined on 3.

* The action is the one of free (bosonic) scalar fields, i.e.

Slp] = -— [ do A xdg. (1)

AT s
The normalization constant 3/4m is merely a convention for now.
First, we see that the space of fields admits the decomposition

Map(, S') = Map(2, R/27Z) = | ] Map(2, R), /27 Z,

x€Hom(m1(X),27Z)

where ¥ is the universal cover of ¥, which is C in this case, and Map(%, R),
consists of functions ¢, : ¥ — R that are 7, (X)-equivariant. Explicitly, we
have the map Map(%, S') 3 ¢ — ¢, € Map(%, R), with

Oy (ax) = ¢y (x) + x(a), a € m(X).

We denote the above function classes by Map to indicate that such
decomposition is valid for arbitrary classes.

Note that Hom(7(X), 27Z) = H'(X, 27Z), then by Hodge decomposition,
each ¢, can be uniquely decomposed by

¢X:/7(m)ah+wz¢h+w,
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where ay, is the harmonic representative of o € H'(X, 27Z) according to y.!
v(z) is a (oriented) curve starts from a base point in xy € ¥ and ¢ is a single-
valued function on ¥.?

The free field action now reads

Sl = 2

(”ahHL? (Y, =Av) ),

where A is the Laplacian. This suggest the following formula

Depe 51 = / 6, &SI
Fs Map(Z,R)y /27rz

XEHom(ﬂ'l ),27Z)

_ Z e~ ah]/ Dipe~ B, —AY) 2 /4T
Map(Z,R)

a€H(S,277)

= Y Pl / Dipeb—A0) j2/im
Map(Z,R)

a€eH(S,277)

Now the remaining problem is to calculate the Gaussian integral
/ D¢6—B(¢,—A¢>L2/47T_ (2)
Map(Z,R)

Thus, we employ the zeta function regularization:
Zeta function regularization.

Recall that for finite-dimensional Gaussian integral, we have the result

/ o wAy2g (2m)" 1
R det A det A

(up to normalization) for positive definite A € GL(n,R). We define an analogy
of the det term.

Definition 1. Let M be a compact Riemannian manifold. Consider the
embedding C*°(M) — L?(M) and suppose a positive operator A defined
on L%(M) has discrete spectrum o(A), we define the spectral zeta function

by
Z ATF (3)

A€o (A

!/
with its meromorphic continuation on C. Note that Z f(x) means sum-

mation over well-defined f(z).!

We denote det’ A by the derivative exp(—(’4(0)) and refer it as the determi-
nant of A.

The motivation of such definition comes from the finite-dimensional analog: If
A is a positive-definite operator on a Euclidean space, then (4(z) = ij:l A2
and ¢y (2) = = -  A-#In \,. Then

n=1

exp(~C4(0)) = exp(X, InA,) = [T, Ay = det A,



By such definition, we can mimic finite-dimensional Gaussian integral and
compute

27 vol(2)
Dipe” B, —AY) 2 /4w _ ' ' 4
/Map(EJR) det (_BA/27T) ( )

Remark. The zero mode of the Laplacian actually contributes the factor

V2 vol(¥). Let ¢ = 37, ) axuy, where ay € R and uy € L3(%,SY), be

a spectral decomposmon of L2(Z S1). Since —A is semi-positive definite, we
can consider ¢ = ZZOZO anly,, where a, = ay, and so on. We identify \g =0
as the 0-th eigenvalue and the degeneracy. The functional integral measure
is then understood as'

Dy = [[ dvon, tn = an//27vol(T).
n=1

In this case, the functional integral becomes

D¢6—3(¢7_A¢>L2/47r: /d@bnexp - )\n|an|2 :
/Map(E,lR) nr:[(] R nz:%

This "equality” comes from the lattice approximation of functional integral,

that is, we regard fMap(E) = lim, .o Vx(n fMap(Z" , where 1/Vg( ) is the
normalization count for vol(X). In this case, Vx(n) = /vol(X) . Thus we

can compute the integral as follows:

ﬁ4d¢nexp<§:ﬁkn|anlg/4w> =/d¢oH/d¢nexp< ZBA || /47r)

/ %H B, /27r
\/27TV012H

B / 27 vol(X)
~\det'(—8A/2m)
We conclude that our final expression with the theorem.

BAn /27r

Theorem 1. For a bosonic Sigma model with S'-valued defined on
(Fx, S, %) = (Map(%, S1), S[¢], X2) with ¥ a compact Riemann manifold, the
Fuclidean partition function is the form

Zs(6.5) = Y )€5||04h||2Lz/47T \/dei?_vglg)m. (5)

acHY (277

where A is the Laplacian of the metric on X.



Let us specifically look at 2-dimensional cases, i.e. dimg ¥ = 2. We regard ¥ as

a Riemann surface with genus g.

Proposition 1. Over the Riemann surface ¥, with genus g, the partition
function defined above has the form:

vol(X) det Im 7
det'(—A)
(6)

Zs(B,5,) = exp(—=x(Xy)(=31In27 + 111n 5/4))0¢g4,8) (T, 7_')\/

where T is the periodic matriz of ¥ and Q(g, ) is the lattice

Q9,8) = Q5 = {(VBm +n/\/B)/2,(v/Brm — n/\/B) /2| m,n € Z}".

The theta function Vg on a lattice () C E,, s is defined as

Io(r,7) = > exp(rv=1((g+ 7q+) — (¢-,7¢4))),

(q+»q*)€Q

and (+,-) is a indefinite bilinear form on the vector space E, s =FE, ®F,_.
Here, (-,-) has signature sy — s_ and is positive and negative definite on E,
and Es_ respectively.

Proof. Let (a;, b;)1<i j<4 be a symplectic basis of H; (X, Z) with the
corresponding basis (w');<;<, of holomorphic 1-forms H;°(5,). We have

/wjzé”, /wJ:T”,
a; b;

where 7 = (7%) is the periodic matrix. Note that the imaginary part Im 7 is
positive definite. The harmonic form «, is of the form

ap = (7m + n)" Im 7~ 'w + complex conjugate.

(s
V-1
Here m, n € Z7 gives the harmonic forms in H'(X, 27Z) with a;-periods
—2mm; and b;-periods 27n;. The L?-norm becomes

Imr~

||Of ||2 -9 Q(m n) 1 ImT_l R,eT m
hllpz = &7 —Re7(Im7)™! Rer(Im7)'Rer+Im7/)\n)/
Then by Poisson summation formula, we have

3 e~ Bllenlliz/4m — g9/2\/det Tm 70 (g 5) (7, 7).

a€H (Z,2nZ)

Inserting this back to the expression we have the desired result. [



Remark. In the reference, Lecture 1, part 3 of volume 2 of [?], one can
compute the Laplacian determinant term explicitly in lower genus by the
analysis of zeta functions. For example, if ¢ = 1, the periodic matrix 7 is
just a complex number in upper half plane, 7 € §). Then we have det’(—A) =
Im 72|n(7)|* where n(7) is the Dedekind eta function

[e.9]

_ ewﬁT/lZ H(l . e27r\/—71n7').

n=1

n(7)

Thus the Euclidean partition function of bosonic scalar field theory with
Sl-valued is
VOl(E) 1 2 2
ZS(Baz): T N2 qp+q )
m 7| (r)[? 2

m,ne’

where ¢ = €™~ and py = (v/Bm £+ n//B)/2.
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1. This means [d¢,] = a € H'<

2. We have f7 ap, = X () for any loop ~. ¢ by definition have zero monodromy

and hence is single-valued.<
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