Notes on Partition Functions on the Riemann surfaces

JellyShark_aq • 16 Oct 2025

Partition Function on the Riemann surfaces

In this note we follow Lecture 1, part 3 of volume 2 of (Deligne et al. 1999) to calculate Euclidean partition function of free scalar fields with periodic boundary conditions.

The field theory datum $(\mathcal{F}_{\Sigma}, S, \Sigma)$ are the following

- Σ is a compact Riemannian manifold. (The metric is irrelevant here)
- The space of fields \mathcal{F}_{Σ} is a function class (smooth, distributional, Sobolev, etc.) Map (Σ, S^1) defined on Σ .
- The action is the one of free (bosonic) scalar fields, i.e.

$$S[\phi] = \frac{\beta}{4\pi} \int_{\Sigma} d\phi \wedge *d\phi. \tag{1}$$

The normalization constant $\beta/4\pi$ is merely a convention for now.

First, we see that the space of fields admits the decomposition

$$\operatorname{Map}(\Sigma, S^1) = \operatorname{Map}(\Sigma, \mathbb{R}/2\pi\mathbb{Z}) = \bigsqcup_{\chi \in \operatorname{Hom}(\pi_1(\Sigma), 2\pi\mathbb{Z})} \operatorname{Map}(\tilde{\Sigma}, \mathbb{R})_{\chi}/2\pi\mathbb{Z},$$

where $\tilde{\Sigma}$ is the universal cover of Σ , which is \mathbb{C} in this case, and $\operatorname{Map}(\tilde{\Sigma}, \mathbb{R})_{\chi}$ consists of functions $\phi_{\chi} : \tilde{\Sigma} \longrightarrow \mathbb{R}$ that are $\pi_1(\Sigma)$ -equivariant. Explicitly, we have the map $\operatorname{Map}(\Sigma, S^1) \ni \phi \longmapsto \phi_{\chi} \in \operatorname{Map}(\tilde{\Sigma}, \mathbb{R})_{\chi}$ with

$$\phi_{\chi}(ax) = \phi_{\chi}(x) + \chi(a), \ a \in \pi_1(\Sigma).$$

We denote the above function classes by Map to indicate that such decomposition is valid for arbitrary classes.

Note that $\operatorname{Hom}(\pi_1(\Sigma), 2\pi\mathbb{Z}) \cong H^1(\Sigma, 2\pi\mathbb{Z})$, then by Hodge decomposition, each ϕ_{χ} can be uniquely decomposed by

$$\phi_{\chi} = \int_{\gamma(x_0)} \alpha_h + \psi \equiv \phi_h + \psi,$$

where α_h is the harmonic representative of $\alpha \in H^1(\Sigma, 2\pi\mathbb{Z})$ according to χ .¹ $\gamma(x_0)$ is a (oriented) curve starts from a base point in $x_0 \in \Sigma$ and ψ is a single-valued function on Σ .²

The free field action now reads

$$S[\phi_{\chi}] = \frac{\beta}{4\pi} (\|\alpha_h\|_{L^2}^2 + \langle \psi, -\Delta\psi \rangle_{L^2}),$$

where Δ is the Laplacian. This suggest the following formula

$$\int_{\mathcal{F}_{\Sigma}} \mathcal{D}\phi e^{-S[\phi]} = \sum_{\chi \in \operatorname{Hom}(\pi_{1}(\Sigma), 2\pi\mathbb{Z})} \int_{\operatorname{Map}(\tilde{\Sigma}, \mathbb{R})_{\chi}/2\pi\mathbb{Z}} \mathcal{D}\phi_{\chi} e^{-S[\phi_{\chi}]}$$

$$= \sum_{\alpha \in H^{1}(\Sigma, 2\pi\mathbb{Z})} e^{-S[\alpha_{h}]} \int_{\operatorname{Map}(\Sigma, \mathbb{R})} \mathcal{D}\psi e^{-\beta\langle\psi, -\Delta\psi\rangle_{L^{2}}/4\pi}$$

$$= \sum_{\alpha \in H^{1}(\Sigma, 2\pi\mathbb{Z})} e^{-\beta\|\alpha_{h}\|_{L^{2}}^{2}/4\pi} \int_{\operatorname{Map}(\Sigma, \mathbb{R})} \mathcal{D}\psi e^{-\beta\langle\psi, -\Delta\psi\rangle_{L^{2}}/4\pi}$$

Now the remaining problem is to calculate the Gaussian integral

$$\int_{\text{Map}(\Sigma,\mathbb{R})} \mathcal{D}\psi e^{-\beta\langle\psi,-\Delta\psi\rangle_{L^2}/4\pi}.$$
 (2)

Thus, we employ the **zeta function regularization**:

Zeta function regularization.

Recall that for finite-dimensional Gaussian integral, we have the result

$$\int_{\mathbb{R}^n} e^{-\langle x, Ax \rangle/2} dx = \sqrt{\frac{(2\pi)^n}{\det A}} \sim \sqrt{\frac{1}{\det A}}$$

(up to normalization) for positive definite $A \in GL(n, \mathbb{R})$. We define an analogy of the det term.

Definition 1. Let M be a compact Riemannian manifold. Consider the embedding $C^{\infty}(M) \hookrightarrow L^2(M)$ and suppose a positive operator A defined on $L^2(M)$ has discrete spectrum $\sigma(A)$, we define the **spectral zeta function** by

$$\zeta_A(z) = \sum_{\lambda \in \sigma(A)}' \lambda^{-z} \tag{3}$$

with its meromorphic continuation on \mathbb{C} . Note that $\sum' f(x)$ means summation over well-defined f(z).

We denote $\det' A$ by the derivative $\exp(-\zeta'_A(0))$ and refer it as the determinant of A.

The motivation of such definition comes from the finite-dimensional analog: If A is a positive-definite operator on a Euclidean space, then $\zeta_A(z) = \sum_{n=1}^N \lambda_n^{-z}$ and $\zeta_A'(z) = -\sum_{n=1}^N \lambda_n^{-z} \ln \lambda_n$. Then $\exp(-\zeta_A'(0)) = \exp(\sum_n \ln \lambda_n) = \prod_n \lambda_n = \det A$.

By such definition, we can mimic finite-dimensional Gaussian integral and compute

$$\int_{\operatorname{Map}(\Sigma,\mathbb{R})} \mathcal{D}\psi e^{-\beta\langle\psi,-\Delta\psi\rangle_{L^2}/4\pi} = \sqrt{\frac{2\pi\operatorname{vol}(\Sigma)}{\det'(-\beta\Delta/2\pi)}}.$$
 (4)

<u>Remark.</u> The zero mode of the Laplacian actually contributes the factor $\sqrt{2\pi \operatorname{vol}(\Sigma)}$. Let $\psi = \sum_{\lambda \in \sigma(-\Delta)} a_{\lambda} u_{\lambda}$, where $a_{\lambda} \in \mathbb{R}$ and $u_{\lambda} \in L^{2}(\Sigma, S^{1})$, be a spectral decomposition of $L^{2}(\Sigma, S^{1})$. Since $-\Delta$ is semi-positive definite, we can consider $\psi = \sum_{n=0}^{\infty} a_{n} u_{n}$, where $a_{n} = a_{\lambda_{n}}$ and so on. We identify $\lambda_{0} = 0$ as the 0-th eigenvalue and the degeneracy. The functional integral measure is then understood asⁱⁱ

$$\mathcal{D}\psi = \prod_{n=1}^{\infty} d\psi_n, \ \psi_n = a_n / \sqrt{2\pi \operatorname{vol}(\Sigma)}.$$

In this case, the functional integral becomes

$$\int_{\operatorname{Map}(\Sigma,\mathbb{R})} \mathcal{D}\psi e^{-\beta\langle\psi,-\Delta\psi\rangle_{L^2}/4\pi} = \prod_{n=0}^{\infty} \int_{\mathbb{R}} d\psi_n \exp\left(-\sum_{n=0}^{\infty} \lambda_n |a_n|^2\right).$$

This "equality" comes from the lattice approximation of functional integral, that is, we regard $\int_{\operatorname{Map}(\Sigma)} = \lim_{n \to \infty} V_{\Sigma}(n) \int_{\operatorname{Map}(\mathbb{Z}^n)}$, where $1/V_{\Sigma}(n)$ is the normalization count for $\operatorname{vol}(\Sigma)$. In this case, $V_{\Sigma}(n) = \sqrt{\operatorname{vol}(\Sigma)}^n$. Thus we can compute the integral as follows:

$$\prod_{n=0}^{\infty} \int_{\mathbb{R}} d\psi_n \exp\left(\sum_{n=0}^{\infty} \beta \lambda_n |a_n|^2 / 4\pi\right) = \int_{\mathbb{R}} d\psi_0 \prod_{n\geq 1} \int_{\mathbb{R}} d\psi_n \exp\left(-\sum_{n=1}^{\infty} \beta \lambda_n |a_n|^2 / 4\pi\right)$$

$$= \int_{\mathbb{R}} d\psi_0 \prod_{n\geq 1} \sqrt{\frac{1}{\beta \lambda_n / 2\pi}}$$

$$= \sqrt{2\pi \operatorname{vol}_{\Sigma}} \prod_{n\geq 1} \sqrt{\frac{1}{\beta \lambda_n / 2\pi}}$$

$$= \sqrt{\frac{2\pi \operatorname{vol}_{\Sigma}}{\det'(-\beta \Delta / 2\pi)}}.$$

We conclude that our final expression with the theorem.

Theorem 1. For a bosonic Sigma model with S^1 -valued defined on $(\mathcal{F}_{\Sigma}, S, \Sigma) = (\operatorname{Map}(\Sigma, S^1), S[\phi], \Sigma)$ with Σ a compact Riemann manifold, the Euclidean partition function is the form

$$Z_S(\beta, \Sigma) = \sum_{\alpha \in H^1(\Sigma, 2\pi\mathbb{Z})} e^{-\beta \|\alpha_h\|_{L^2}^2 / 4\pi} \sqrt{\frac{2\pi \operatorname{vol}(\Sigma)}{\det'(-\beta \Delta / 2\pi)}}.$$
 (5)

where Δ is the Laplacian of the metric on Σ .

Let us specifically look at 2-dimensional cases, i.e. $\dim_{\mathbb{R}} \Sigma = 2$. We regard Σ as a Riemann surface with genus q.

Proposition 1. Over the Riemann surface Σ_g with genus g, the partition function defined above has the form:

$$Z_S(\beta, \Sigma_g) = \exp(-\chi(\Sigma_g)(-3\ln 2\pi + 11\ln \beta/4))\vartheta_{Q(g,\beta)}(\tau, \bar{\tau})\sqrt{\frac{\operatorname{vol}(\Sigma)\det\operatorname{Im}\tau}{\det'(-\Delta)}}$$
(6)

where τ is the periodic matrix of Σ and $Q(g,\beta)$ is the lattice

$$Q(g,\beta) = Q_{\beta}^g = \{(\sqrt{\beta}m + n/\sqrt{\beta})/2, (\sqrt{\beta}m - n/\sqrt{\beta})/2 \mid m, n \in \mathbb{Z}\}^g.$$

The **theta function** ϑ_Q on a lattice $Q \subset E_{s_+,s_-}$ is defined as

$$\vartheta_Q(\tau, \bar{\tau}) = \sum_{(q_+, q_-) \in Q} \exp(\pi \sqrt{-1}((q_+, \tau q_+) - (q_-, \bar{\tau} q_+))),$$

and (\cdot, \cdot) is a indefinite bilinear form on the vector space $E_{s_+,s_-} = E_{s_+} \oplus E_{s_-}$. Here, (\cdot, \cdot) has signature $s_+ - s_-$ and is positive and negative definite on E_{s_+} and E_{s_-} respectively.

Proof. Let $(a_i, b_j)_{1 \leq i, j \leq g}$ be a symplectic basis of $H_1(\Sigma, \mathbb{Z})$ with the corresponding basis $(\omega^i)_{1 \leq i \leq g}$ of holomorphic 1-forms $H_{\bar{\partial}}^{1,0}(\Sigma_g)$. We have

$$\int_{a_i} \omega^j = \delta^{ij}, \ \int_{b_i} \omega^j = \tau^{ij},$$

where $\tau = (\tau^{ij})$ is the periodic matrix. Note that the imaginary part ${\rm Im}\,\tau$ is positive definite. The harmonic form α_h is of the form

$$\alpha_h = \frac{\pi}{\sqrt{-1}} (\bar{\tau} \mathbf{m} + \mathbf{n})^t \operatorname{Im} \tau^{-1} \omega + \text{complex conjugate.}$$

Here $\mathbf{m}, \mathbf{n} \in \mathbb{Z}^g$ gives the harmonic forms in $H^1(\Sigma, 2\pi\mathbb{Z})$ with a_i -periods $-2\pi m_i$ and b_i -periods $2\pi n_i$. The L^2 -norm becomes

$$\|\alpha_h\|_{L^2}^2 = 2\pi^2 (\mathbf{m} \cdot \mathbf{n}) \begin{pmatrix} \operatorname{Im} \tau^{-1} & \operatorname{Im} \tau^{-1} \operatorname{Re} \tau \\ -\operatorname{Re} \tau (\operatorname{Im} \tau)^{-1} & \operatorname{Re} \tau (\operatorname{Im} \tau)^{-1} \operatorname{Re} \tau + \operatorname{Im} \tau \end{pmatrix} \begin{pmatrix} \mathbf{m} \\ \mathbf{n} \end{pmatrix}.$$

Then by Poisson summation formula, we have

$$\sum_{\alpha \in H^1(\Sigma, 2\pi\mathbb{Z})} e^{-\beta \|\alpha_h\|_{L^2}^2/4\pi} = \beta^{g/2} \sqrt{\det \operatorname{Im} \tau} \vartheta_{Q(g,\beta)}(\tau, \bar{\tau}).$$

Inserting this back to the expression we have the desired result. \Box

<u>Remark.</u> In the reference, Lecture 1, part 3 of volume 2 of [?], one can compute the Laplacian determinant term explicitly in lower genus by the analysis of zeta functions. For example, if g = 1, the periodic matrix τ is just a complex number in upper half plane, $\tau \in \mathfrak{H}$. Then we have $\det'(-\Delta) = \operatorname{Im} \tau^2 |\eta(\tau)|^4$ where $\eta(\tau)$ is the Dedekind eta function

$$\eta(\tau) = e^{\pi\sqrt{-1}\tau/12} \prod_{n=1}^{\infty} (1 - e^{2\pi\sqrt{-1}n\tau}).$$

Thus the Euclidean partition function of bosonic scalar field theory with S^1 -valued is

$$Z_S(\beta, \Sigma) = \sqrt{\frac{\operatorname{vol}(\Sigma)}{\operatorname{Im} \tau}} \frac{1}{|\eta(\tau)|^2} \sum_{m, n \in \mathbb{Z}} q^{p_+^2} \bar{q}^{p_-^2},$$

where $q = e^{2\pi\sqrt{-1}\tau}$ and $p_{\pm} = (\sqrt{\beta}m \pm n/\sqrt{\beta})/2$.

Reference

Deligne, P., P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison, and Edward Witten, eds. 1999. *Quantum fields and strings: A course for mathematicians. Vol.* 1, 2.

- 1. This means $[d\phi_{\chi}] = \alpha \in H^1 \hookrightarrow$
- 2. We have $\int_{\gamma} \alpha_h = \chi(\gamma)$ for any loop γ . ψ by definition have zero monodromy and hence is single-valued. \hookrightarrow