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These are some notes working out a particular unbiased estimator that I needed
for making some improvements to the AWRS algorithm in genlm-control. You
can see where this gets used in practice in the AWRS implementation.

Suppose you’ve got an infinite sequence of IID Bernoulli(p) distributions, Xi.
You want an unbiased estimator for p. How can you efficiently read the values
of the Xi to get one?

We’re particularly interested in the case where sampling the Xi is “expensive”
in some sense, so you want to use as few values as possible. I won’t make this
precise here, it’s just the motivating intuition.

The first, and most obvious, strategy, is that for some n you unconditionally
return 1

n

n∑
i=1

Xi.

This approach is fine, but you always “spend” n samples. One of the cases that
we’re interested in is that when p is close to 1 we would like this process to be
cheap, which means that spending n samples each time isn’t ideal.

A natural idea is to sample until you see your first success. Unfortunately, this
idea doesn’t work, for the following reason:

Theorem: Let X ∼ Geom(p). The only unbiased estimator for p from a single
sample of X is to return 1 if X = 0 and 0 if X > 0.

Proof:

Suppose we have some unbiased estimator f .

Then p = E(f(X)) =
∑
i≥0

f(i)p(1 − p)i

So 1 =
∑
i≥0

f(i)(1 − p)i.

The right hand side is a power series in 1 − p, so by the uniqueness of power
series, we must have that f(0) = 1 and f(i) = 0 for i > 0 as desired.

However, you can get a good estimator for p by sampling until you see s > 1
successes and record the number of failures, n. This gives you a negative
binomial NB(s, p) distribution, and this has a standard minimum variance
unbiased estimator for p of s−1

s+n−1 .

This works just fine.
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However, another consideration that we might care about is that we’d like our
estimator to not be too expensive when p is small. This has expected value
s(1−p)

p , so when p is small we will have to take many samples.

The solution is to “round towards zero” at a certain point. The reason we need
unboundedly many draws is that we need to distinguish between very small
values of p. If we’re happy to return an estimator of 0 for some small non-zero
values of p, we can bound the cost of sampling using the following theorem:

Fix integers r, s > 0. Sample from the Xi until we’ve seen either r failures or s
successes, and let R be the number of failures we saw and and S the number of
successes.

These variables have the joint law:

• P (R = i, S = s) =
(

i+s−1
s−1

)
(1 − p)ips

• P (R = r, S = j) =
(

r+j−1
r−1

)
(1 − p)rpj

Consider the case S = s. This result arises precisely when the first i + s draws
contain exactly s successes, of which the last one is a success.

Each such sequence of assignments occurs with probability ps(1 − p)i, so to
calculate the probability of this we just need to count sequences.

There are i + s such sequences, distinguished only by where the successes are.
One success must be at the end, so there are s − 1 successes to distribute among
i + s − 1 positions. This can be done in

(
i+s−1

s−1
)

ways, giving the desired result.

The other case is proved identically.

Now, suppose r, s > 1.

Define Q as follows: If R = r (i.e. we stopped because we hit the maximum
number of failures), Q = S

R+S+1 . Otherwise (i.e. we stopped because we hit the
maximum number of successes), let Q = S−1

R+S+1 .

Theorem: Q is an unbiased estimator for p.

Proof:

This will follow from the Rao-Blackwell theorem.

First, note that (R, S) is a sufficient statistic for p, as all dependence on p is via
its value.

Now, consider the trivial unbiased estimator X1. i.e. we estimate 1 if X1 succeeds
and 0 otherwise.

Let us consider the conditional expectation E(X1|R, S).

First, suppose S = s.

Then
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E(X1|R = i, S = s) = P (X1|R = i, S = s)

= P (X1 ∧ R = i ∧ S = s)
P (R = i, S = s)

= P (X1)P (R = i ∧ S = s|X1)
P (R = i, S = s)

=
p
(

i+s−2
s−2

)
(1 − p)ips−1(

i+s−1
s−1

)
(1 − p)ips

=
(

i+s−12
s−2

)(
i+s−1

s−1
)

= (i + s − 2)!(s − 1)!i!
(i + s − 1)!(s − 2)!i!

= s − 1
i + s − 1

Where we used that P (R = i ∧ S = s|X1) =
(

i+s−2
s−2

)
(1 − p)ips−1 because this is

just exactly the same process but with one fewer success required to complete
(because it was already provided by the X1.

We could do the algebra for the other direction, but instead we exploit the
symmetry of the process. By swapping success and failure, we get the same
process but with r and s swapped and p → 1 − p. Thus r−1

r+j−1 is an unbiased
estimator for 1 − p, and:

1 − r − 1
r + j − 1 = r + j − 1 − (r − 1)

r + j − 1

= j

r + j − 1

as desired.

These values are precisely Q as we previously defined it, completing the proof.
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