Deligne-Lusztig theory
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Lang-Steinberg: If G is a connected algebraic group defined over F,, define the
Lang map L : G — G by g — g 'F(g), then L is surjective (connectedness is
crucial). This is also true for abelian varieties. Some famous examples are G,
and this reduced to Artin-Schreier exact sequence. In the case of G,, it becomes
Kummer exact sequence.

Corollary: Let V' be a variety acted by a connected group G. Let O C V be a G-
orbit. Assume G, V' and the action is defined over IF, and O is stable under F'.
Then OF # (). (Proof is that if z € O then F(x) = g~ 'z for some g and use
Lang-Steinberg to write g = h~1F(h) then hx € OF.) This is specific to finite
fields, e.g. if F(z) = = then P!(C)¥ = 0.

Corollary: Let C G inclusion of algebraic groups over IF,. Then

(G/H)¥ = G¥/HT where H is connected and G could be disconnected. This is
because the map G'/HT — (G/H)¥ is surjective by the previous corollary
(because a H-coset is an H -orbit) and injectivity is easy. Connectedness of H is
crucial because if G = G,, and H = {£1} then G/H = G,, by the squaring
map z +— 2 and the map G — (G/H)* can be identifies with it, which is not
surjective from F to F.

Corollary: Reductive groups over finite fields are quasi-split (note that 7" is F'-
stable$ doesn’t mean 7' is split; it just means 7" is defined over [, but the Galois
action on it could still be nontrivial). If G is connected algebraic group over FF,.
There exists T' C B C G such that F(T') C T, F(B) C B. To find a F'-stable
Borel we just let V' = G/ B be the variety of Borel subgroups and this is a single
G-orbits stable under F’ (since F'(B) is still a Borel). The same argument
applies to finding an F'-stable maximal torus.

Note that for a single orbit O C V/, the induced action G¥" on OF (which is
nonempty by the previous corollary) is not necessarily transitive (e.g. G,,, acting
on itself by = - v = x%v).

Theorem: G -orbits on OF are in bijection with the F'-conjugacy classes of
Stabg(x)/Stabg(x)° for any x € OF. The map is given by gz — g~ F(g).
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Corollary (DL, classification of F-stable maximal torus): The G¥ -conjugacy
classes of F'-stable maximal torus is in bijection with F'-conjugacy classes of
N(T)/Z(T) = W (in the reductive case Z(7T') = N(T)°.) The map is given by
mapping 7" = gTg~! to g~'F(g). Moreover, there are isomorphisms

(T"F = (T)¥°F, here w is the image g ' F(g).

Example: If G = GL,, and T the standard diagonal maximal torus. Then F' acts
trivially on W = S, so the conjugacy classes of F'-stable maximal torus are in
bijection with (ordinary) conjugacy classes of .S,,.

Let GG be an algebraic group (possibly disconnected). There is a bijection
between F'-conjugacy classes of G to F'-conjugacy classes in G/H if H is a
connected normal subgroup defined over [F,. The nontrivial direction follows
form using a different I -struture (essentially corresdponding to embedding of
H into affine space A" and use the Frobenius on A™) given by z — zF(z)z™!
(by Lang-Steinberg theorem we can modify the embedding and hence it is a
Frobenius structure), and apply Lang-Steinberg theorem to it. Thus if G is
reductive ' = Z(T') C N(T) we get a bijection between F'-conjugacy classes
in N(T') and F'-conjugacy classes in T. Injectivity is easy and surjectivity
again follows from Lang-Steinberg.

An algebraic group G can have many different IF,-rational structures. Over C,
GL,(R) is the set of fixed points under conjugations, but we can use a different
conjugations, e.g. g — (g7 )~!, then the set of fixed points are U,,(C). They are
two different real structures on GL,,.

Example: In G = SL,,

F ~ rsoF t t ~ @N=1
werr= ()= W)}

.In G = GL,,, for every partition (n; > .. > n;), then T) =F, x ... x F5,.
But to write down the explicit embedding of T} into GL,(F,) requires solving
g 1F(g) = w. If we let w be the longest element (n), then

T ={(ti, tp) €T, it =t to =t t, =t]_} =T

Let V' be a variety over F, with F': V' — V.Leto : V — V be an
automorphism such that (¢ o F')” = F" for some n > 1. Then F' =0 o F isa
Frob map associated to a I, structure on V'.

Example: If ¢ : G,, — G,, denotes the inversion map, then ' = o o F'is a
different Frobenius with GI = {z : 7*! = 1}. We have a commutative
diagram.

In particular we can let V' =T and o € W (note that w o F' # F ow in
general).
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Define o : GL,, — GL,, sending g to (¢7)~!. In this case 0 o F' = F o ¢ and
F? = F2. We have GLE" is called the unitary group U, (F,). If F is the usual
conjugation then this the usual unitary group. Unfortunately, F” still acts
trivially on W,,. The F’-stable maximal torus in the unitary group is still in
bijection with partitions of 7.

Consider G = S0Os,, associated to J the anti-diagonal all-one matrix. Take the
maximal torus T' = (t1,...t,, t;%, ..., t;!). Let o be Ad,, where

on € Ogp \ SOy, is the permutation matrix corresponding to (n,n + 1) (so this
is not an inner automorphism of SO, ). It is an outer automorphism of the
Dynkin diagram of swapping the branching nodes. Since F' and ¢ commutes, we
have F? = F2. We call SO¥" the twisted special orthogonal group. The Weyl
group of SOy, is S, x (£1)2 ., where +1 swap the i-th and 2n — i 4 1-th
factor, where we only consider even number of swaps. It can be generated by
01, ...0,_1 Where g; swaps t;ﬂ with t;.ill and o, swaps t, and ¢, !. Alternatively
it is generated by o4, ...0,,_1, 0,0,_10, and F’-action just permute the last two
generators.

(Steinberg) Let GG,4 be the Chevalley group. Let ¢ : G4 — G4 be any outer-
automoprhism of A,,, D,,, E. Then F” is a Frobenius of G4 and G, is a finite
simple group called the twisted Chevalley group if |F,| > 5.

A F-stable maximal torus 7" if T¥ = ((F,)*)4™(), G is split if it has a split
maximal torus.

Exercise: U,(F,) is not split. The F'-stable maximal tori are 7 and 7 where

and p T ~ X -
Ty = (ng)NZI I = {( xq)} =P

For non-simply-laced Dynkin diagram like $B_2, there are exceptional F,-
structures when ¢ = 2" or 3" and n odd. They are known as Suzuki and Ree
groups.

Goal: For each F'-conjugacy class of W corresponding to the F'-stable
maximal torus 7", construct representations of G parametrized by (complex-
valued) characters of T”.

The idea is to have a common geometric object X for which both T* and G*
acts and if their actions commute, then we can link characters of T* to
representations of G¥'. For the standard maximal torus T' C SL, if we take
SLy(F,)/U(F,) then we get the principal series.

We have seen that we can always find a F'-stable maximal torus inside a F'-
stable Borel. But there are F'-stable maximal torus that are not contained in any
F-stable Borel.
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DL’s idea to construct such an object X is to use the Lang’smap L : G — G
given by g — ¢g~1F(g). Note that the fibers are G* -torsor (act by left
multiplication). We now want to find a collection of fibers that are acted on by
Tr.

Pick a Borel B containing 7', and let U be the unipotent radical of B. Let

Y := L7Y(U). Then T* acts by right mutiplication on Y. Actually U N F(U)
also acts by right multiplication on Y. The quotient X := Y/(U N F(U)) and
X=X /TF are the so-called Deligne-Lusztig varieties.

Example: Assume F'(B) = B, then F(U) = U, then

X={geG:g'F(g) €U} C G/U and it is easy to see that

X = (G/U)F = GFJUT (since U is connected) and X = G¥/BF . In this X
and X are zero-dimensionnal varieties so only H° is interesting.

Alternative description using Weyl group and twisted Frobenius structure: Pick
To C By F-stable. Let W = N(Ty)/Ty and X = G/By. For any w € W, define
Xy ={B € X :B~"F(B)}.Note that

Xo={9Bo : 97" Bog ~* F(gBog™") = {gBo : (9Bo, F'(9)Bo) € Yo} = {9y :
97'F(g) € BowDBo}

. If we pick a lift w® of w, define X,» = {gU : "' F(g) € Upw*U,} and

Yoo ={9€G:g'F(g9) € wlUp}.

Proposition: 1. G¥ acts on Yy, Xye, X, on the left. 2. T2°F and
Up Nw*Uyw®~t act on Y, on the right. 3. Y. /(Uy N w*Uyw* 1) = X 4
Yo /(TEF x Uy Nw*TUpw® ™) = X,

There are GG g-equivariant isomorphism from Y7g to Y,.. The map is given by
sending g to gz where w® = ! F'(x) and similarly for the X’s. The advantage
of the former is that it’s more canonical while the advantage of the latter is that
we can do explicit equation by choosing the standard 7, Uy.

Example: For , pick W — 1, then consists of

g = (a b) satisfies ,
c d al=—b,c?=—d,b? =a —bu,d? =c—du,ad — bc =1
which can be solved to yield ad — db? = bc — bd? and a? = —b and ¢? = —d,
and hence a?°¢? — a?¢?" = 1. Taking g-th root yield the Drinfeld curve. In this
case Uy N w*Upw* ™! = e, 50 Yy« is isomorphic to Xw., and
X, ={B€G/By: B+# F(B)} =P\(F,) \ P(F,), which is the finite field
analogue of the upper and lower half-plane H* = P!(C) \ P!(R). The p-adic
analogue is called the Drinfeld’s half-plane.

In the case of unitary group G* = Us(F,) and w = (123),

Xy ={BeX:B~"FB)}= "+l 40" = (v, F(v)) = 0} C P2
G* acts on X, since (gv, F(gv)) = ((F(g9)") tgv, F(v)) = (v, F(v)). This



case is done by Tate-Thompson, and the induced action on the H' contains
interesting unipotent cuspidal representation. In the real case it is related to
spherical harmonics.

To state the main theorem of Deligne-Lusztig it is better to use cohomology with
compact support because it makes Lefschetz trace formula works, which holds
for non-smooth varieties as well. The homology counterpart is the Borel-Moore
homology, which are formed by replacing chains with locally finite chains
(Borel-Moore homology is a covariant functor with respect to proper maps,

e.g. R?\ {0} — R? is a counterexample. Similarly for cohomology with
compact support).

We define the virtual representation R} 5 = >_,o(—1)'Hi(Xrcp)s € R(GF)
and its trace X ps. s
Main properties of RY._p:

1. R} 5 = RY_p forany B, B’ containing T'.

2. Any irreducible representation p of G¥' appears with nonzero coefficient

in some RY.
3. For most choice of (T, ), RS is & of irreducible representation.
4. (RS, RS = 1iff |[{w € Wy : F(w) = w,w(f) =0} =1

(Ri5.Rp) = {w € (T\N(I,T)/T)" = W(T,T)" = TF\ N(T,T')" :
w(f) = 0'}]
where N(T',T") is the set of intertwiners that sends 7" to 7".

F
6. dim R} = Tr(1, R}) = £/

is an explicit way to determine the sign.

, in particular it is independent of . There

Fact: Let X/k be a variety with dim X = 0, then H:(X) = 0 if i # 0,
HY(X) = C[X].If f € Aut(X) is a permutation of X, then f* induces the
permutation representation of HY.

Example: consider T C B where B is F-stable. Then X7c5 = GF/UF, so
dim = 0. Then R} = C[G¥ /U], is the usual parabolic induction.

For the Drinfeld curve, we have RY, = 1 iff 6 is regular, i.e. § doesn’t factor
through the norm map, and dim Rf, = +(g — 1).

(Lefschetz fixed point formula) If F': X — X is the Frobenius map (in
particular it is proepr so it induces maps on compactly supported cohomology),
then L(f, X) := Zizo(—l)"Tr(f* c H{(X) — HY(X)) =|XT|.

Example: if X = A", then the only nonzero cohomology is H?"(X) = Q, and
Tr(F*) =q", so L(F,A") = q".
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Let g € Aut(X) be a finite-order automorphism. Then
1. L(g,X) = Lg™", X).
2. L(g, X) € Z and it is independent of £.

3. (Kunneth formula) If g € Aut(X) and ¢’ € Aut(X'), then
L{g x ¢, X x X') = L(g, X)L(g, X).

41 X = | |, X, then L(g, X) = >~ s xn=x, L9, Xi).

5. If g = su = us is the Jordan decomposition where s has order coprime to
p and u has order power of p, then L(g, X) = L(u, X?®). In particular, if
g = s, then L(g, X) = L(e, X9) = x(X9).

6.If p: X — X' is a surjective map with fibers isomorphic to A" for some
fixed n, and g € Aut(X) and ¢’ € Aut(X’) commute w.r.t. p, then
L(g, X) = L(¢, X').

7. (Homotopy invariance) Let G C Aut(X) be a connected algebraic group,
then ¢g* = id and L(g, X) = L(e, X) = x(X).

Fact: U N F(U) is affine. So L(g, Yrcp) = L(g, XTcB). The following lemma
reduces the computation of character of R%_p to that of Lefschetz number:

Lemma: Tr(g, Ry p) = ﬁ S err 0t L((g, 1), Xrcp) (because
ﬁ > ierr 0(t) 7 is a projection from 7 to 1/9)

Proof of independence of 6 for RY.j;: calculate
<R%CB - R%/CBa R%CB - Rg“lCB> (note that <R%CB7 R%CB) = <R3:CB7 R'%/CB>)

Define the Green function by Q% := Tr(—, R}.)|gr : G§ — C (it turns out to
have values in Z). It is also the same for other character  : TF — C*. In
particular, the dimension RY. is independent of 6, and equal to the Euler
characteristic x(X,, ). Note that this depends on the Frobenius structure on the
variety.

Example: For X, we have X, = P}(F,) and X, = P' \ P*(F,). We have
X(Xe) = ¢+ 1=dimRj and
X(X) =x(P) = x(Xe)=(1-0+1) = (1+q)=1-qg=(-1)(¢—1) = —dim R},

Kazhdan-Springer formula for Q%: Assume char(F,) = p > 0, let
exp : g&, = GF. Let B(—, —) be the Killing form. Fix a regular semisimple

element s € g whose centralizer Z¢(s) is a torus.

Let n € g, be a nilpotent element. Let ¢ € k and
N.=H{zeg:z=ysy ',y € G" B(z,n) = c}|. Then

Q% (exp(n))] = (No — N1)/|GF|,, the p-primary part of |G¥|. When n = 0,
F IGFly
No = (0,)F = (G/T)F| = %1 and y, _ 50 @ (e)] = ot

TF|



Let T of type [w]. Springer showed that

QF(u) = Y iso(=1)'Tr(Frow : H(X,) — H.(X,)) and

X.={B € X : uBu™' = B} is the famous Springer fiber and w acts on
H!(X,) via the Springer representation.

Example: If G = GL,y, X, = X =P, W = S, acts on H? by trivial and H? by
sign representation. Then Q% (e) = 1+ ¢ (since e acts trivially on H}) and
W§ (e) = 1 — ¢ (because s acts by —1 on H?).

We have the following character formula for x € G

1 5)° _
Ry (x) = W Z QgZTG;—)I (u)6(g "' s9)

geEGF g=1lsgeT¥

where x = us = su are the Jordan decomposition of z. Note that
gTg™' C Zg(s)° and Zg(s)° is a connected reductive group stable under F
(since s is)

Corollary: If s is not G -conjugate to T, then T'r(z, R%.5) = 0 (s € T, and
T =T, and w' is not F'-conjugate to w).

Another corollary is Q% = Tr(—, RS.) = Tr(—, R%) when restricted to GF
(because Z(s) = G and Qng_l = Qf for g € GF).

A third corollary is if s € G¥ is regular semisimple (i.e. Z5(s)° is a torus) Then
Tr(s, RS) = Dgewx 0(97 " sg) for T = 7 (s)° (This is because y~1sz € T
implies z € N(T)). For other T the trace is zero by the first corollary.

Proof of character formula: Use the expression for trace in terms of Lefschetz
number. We have the Jordan decomposition (x,t) = (s,t)(u, 1) and use property
5.

Fact:
1. The subgroup B N Z;(s) is a Borel subgroup of Z;(s)°.
2. If g = su = us is a Jordan decomposition, then u € Zg(s)°.

3. (Steinberg) If the derived subgroup [G, G| is simply connected
(i.e. Z® = X,(T)) then Zg(s) is connected.

E.g. If G =GL, and s = (s1,...81, S2, ...S2, ...), then

is connected. If and . _ (1 ,
Za(s) = GLy, X ... X GLy, G = PGL, —1

N

and so it is disconnected (and [G, G] = PS L, admits a 2-fold cover).



A semi-simple element s € G is regular if Z(s)° is a maximal torus. The set of
regular semi-simple elements is dense.

Levi subgroup: Subgroup of the form L = Z;(H) for a torus H is called Levi
subgroup.

Fact: Levi subgroups are connected reductive groups (unlike the case of
semisimple elements). Proper Levi subgroup has positive dimensional center.

Note: Z5(s)° may not be a Levi subgroup (in the case of GL,, itis). A
counterexamle is ,and 1 , then

G - SP4 —1
Za(s) = Sp(2) x Sp(2) and it is not a Levi since its center is the Klein-four
group (this also generalize to Sps,,).

Consider G = SOy, and s = diag(1, —1,—1,...) and Zg(s) = Oy, and
Za(s)° = SOy, is not a Levi subgroup by the same reason. The Langlands dual
of SO, is itself, which is not a subgroup of the Langlands dual of SO, 1,
which is Sps,. It is an example of endoscopic subgroup of Spy,,.

In a sense that the character of a regular semisimple element should determine
the character. Though we are in the context of finite groups of Lie type we
should consider regular unipotent elements as well.

For a non-semisimple element, we can still define what it means for it to be
regular (dimension of centralizer is minimal). Fact: If g is regular, then

for maximal torus . Example: |, _ (1 1} is regular
dim Zg(g) = dim(7) T 1

since its centralizer is (CL b).
a

Fact (c.f. Steinberg’s regular elements of semi-simple algebraic group):
1. Gyey C G is open. If G is semisimple dim G \ G,y < dim G — 3.
2. Greg NGy and Gy N G, are nonempty.

3. For any g € G4, the centralizer is abelian and
dim Z¢(g) = rk(G) = dim(7).
For example: If G = SL,, then (SLs),., is everything but the identity. The

regular semisimple elements are conjugate to (a > , and regular unipotent
—1
a

elements are conjugate to (1 %\ and centralizer are the standard maximal
1

torusand ;{1 u —1 v \ (in particular disconnected).
!
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Exercise: For G = GL,(k), TFAE:
1. g is regular
2. minimal polynomial of g has degree n.

3. k™ is a cyclic module over k[z| where z acts by g.

~

Moreover, the centralizer has a concrete interpretation: Z(g) < (k[z]/(f))*

given by mapping p to p(g) where f is the minimal polynomial of g.
Proof of character formula: The key geometric lemma is
L Y55 = Wacor jagyr ate 1o Yocs N (@ Z6(1)°) = Yelh(a);

ii. YTGC’(;” () = YTZCGéi)O where the isomorphism is given by y — x~!y and
this isomorphism is equivariant for the action of
(Za(s))" x T" = (Zs(t)°)" x T* (by mapping (g, ) to (¢~ ga, 1)).

By (i) and (ii), we have

Tr(g, BY) TF| > > Lz tur, Y7E5))

teTt z€GF /(GO)F atx—1=s-1

By doing a change of variable, this is equal to

! ! Z 0(z " sx)L(u, Y25 )

77 [Z6(5)° ereien

ze€GF x—1sxeTF

Finally, we note that |T1F‘L(u Yx?fc(sz cp) =Tr(u, Rypy1cp.) = Qfgﬁl (u).

Proof of (i): y € Y:,(,S ) means that syt = y and v := y~'F(y) € F(U), which
implies that sF(y)t = F(y) implying (syt)t ‘vt = syvt = yv which implies
t~'vt = v so v € Zg(t)°. By Lang’s theorem, there exists z € Zg(t)° such that
27 'F(z) =v.Let x = yz~!, then

F(z)=F(y)F(z7!) = yvv‘lz_l =yz ' =x,s0x € G' and

st =yz zy ! = yty~' = s, hence y € YT(cf)g NaZa(t).

Proof of inner product formula: The key is the orthogonality of Green functions:

Wer (T.T7)
iG] 2 QG = iy

ueGE

In particular, if 7" is not G -conjugate to 7" then the sum is zero. This is first
proved (in the case of GL,) by J. A. Green. Using this we compute

<RT7R0/ ]GF\ Z Z |Z oF|2 29 acT:c 1 29/

SEGF ue(Zg(s) a\s
by grouping the () together, this is equal to



= /
|GF| Z | Za(s 0F| |TF 2 29 5Y)|Nzg(s)or (T2 LyT'y™

Note that there is a bijection from
{(x,n',n) € G x Ngr(T,T') x (Zg(5)°)' : 27 1sz € TF} to

{(z,y,n) € G x GF,GF : z7lsz e TFylsy € (ITM'.n

Nzgsyeyr (@Ta™t yT'y =)}

by y = nazn’. Plug this into the sum, we have

|GF||TF|2 ZZQ (n')~tw=tsan’),

S xn

1

which is equal to (letting ¢t = z™"sx)

ymzz S onE () ) = Z ’LZ Do (@)

teTF n'€Ng (T, 1") (T, T)/TF eTr

Bl
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