

James reduced product construction

J'ignore • 13 Oct 2025

James reduced product $J(X)$ is the free monoid generated by elements of X in the category of topological spaces. We would like to find out its homology. Note that $J_i(X)$ is obtained from $J_{i-1}(X)$ by the following [pushout diagram](#).

$$\begin{array}{ccc} (X^{i-1})^{\vee i} & \longrightarrow & J_{i-1}(X) \\ \downarrow & & \downarrow \\ X^i & \longrightarrow & J_i(X) \\ \downarrow & & \downarrow \\ X^{\wedge i} & \longrightarrow & X^{\wedge i} \end{array}$$

Thus we see that $J_i(X)$ is $J_{i-1}(X)$ with $X^{\wedge i}$ attached. To compute the homology of $J_i(X)$ inductively, we note that if we take (reduced) suspension of this diagram (which remains a pushout since Σ being left adjoint preserves colimit), the vertical column splits since $\Sigma(X \times Y) \cong \Sigma(X) \vee \Sigma(Y) \vee \Sigma(X \wedge Y)$. Thus $\Sigma J_i(X) \cong \Sigma J_{i-1}(X) \vee \Sigma(X^{\wedge i})$. Thus we have

$$H_*(J(X)) \cong H_{*+1}(\Sigma J(X)) \cong H_{*+1}(\bigvee_i \Sigma(X^{\wedge i})) \cong \bigoplus_i H_*(X^{\wedge i}) \cong \bigoplus_i \tilde{H}_*(X)$$

The last isomorphism follows from Kunneth and $H_*(X/A) \cong H_*(X, A)$ if $A \rightarrow X$ is a cofibration (which implies that $H_*(X \wedge X)$ is the quotient of $H_*(X \times X)$ by $H_*(X \times \{*\}) \oplus H_*(\{*\} \times X)$).

To compute the cohomology ring of $J(S^{2k})$, note that from its cellular structure we know that $H^*(J(S^{2k}))$ has exactly one \mathbb{Z} at degree $2ki$ for every $i \geq 0$. To figure out the ring structure, let $e_{2ki} \in H^*(J(S^{2k}))$ be a generator of the degree $2ki$ component of $H^*(J(S^{2k}))$. We first compute e_{2k}^i for any $i \geq 0$. Note that this is a multiple of e_{2ki} , say $e_{2k}^i = c_i e_{2ki}$ for some $c_i \in \mathbb{Z}$. Let

$\pi : (S^{2k})^i \rightarrow J_i(S^{2k})$ be the attaching map, which induces

$\pi^* : H^*(J_i(S^{2k})) \rightarrow H^*((S^{2k})^i)$. We will compute c_i via relating the image of e_{2k}^i and e_{2ki} under π^* . Note that by Kunneth the cohomology ring of $H^*((S^{2k})^i)$ is $E(a_{2k,j}, j = 1, \dots, i)$, the exterior algebra with i generators at degree $2k$. It is easy to see that the image of e_{2ki} under π^* is $\prod_{j=1}^i a_{2k,j}$. To compute $\pi^*(e_{2k})$, note that the preimage of $S^{2k} \subset J_i(S^{2k})$ under π is $(S^{2k})^{\vee i}$, and it is easy to see from this that $\pi^*(e_{2k}) = \sum_{j=1}^i a_{2k,j}$. Thus

$$\pi^*(e_{2k}^i) = \left(\sum_{j=1}^i a_{2k,j}\right)^i = c_i \prod_{j=1}^i a_{2k,j}$$

Since $a_{2k,j}^2 = 0$ and $a_{2k,j}$ pairwise commute, we deduce that $c_i = i!$.

From knowing $e_{2k}^i = i!e_{2ki}$ we show $e_{2ki}e_{2kj} = \binom{i+j}{i}e_{2k(i+j)}$ easily. This implies the (integral) cohomology of $J(S^{2k})$ is the divided power algebra on $2k$ -dimensional class.

Reference: https://en.wikipedia.org/wiki/James_reduced_product