automorphy lifting: Lecture 10-13

J'ignore • 9 Oct 2025

If the characteristic of the coefficient field is the same as that of the residual characteristic of the local field, we need tools from p-adic Hodge theory.

Cohen structure theorem: Suppose (R,\mathfrak{m}) is equal characteristic CDVR (complete discrete valuation ring). Then the canonical ring homomorphism $R \to k := R/\mathfrak{m}$ splits ring theoretically, i.e. there exists subring $R_0 \to R$ such that $R_0 \to R \to k$ is an isomorphism, and any choice of $t \in \mathfrak{m} \setminus \mathfrak{m}^2$ induces $R \cong k[[t]]$. When R is mixed characteristic (0,p), in this case, there is a coefficient subring R_0 with the following property: 1. R_0 is a CDVR with residue field isomorphic to k via $R \to k$. 2. R_0 is absolutely unramified, i.e. unramified over \mathbb{Z}_p , or $\mathfrak{m} = (p)$. This R_0 is determined up to isomorphism by k, but not uniquely/functorially. Such a coefficient ring is also called Cohen p-ring.

If k is not perfect, then R_0 can be very noncanonical. For example, if we take $k=\mathbb{F}_p(t)$, and $R=\widehat{\mathbb{Z}_p[t]_{(p)}}$. Then R is a CDVR with unique maximal ideal $\mathfrak{m}=(p)$ and $R/\mathfrak{m}=k$. But $t\mapsto t+p$ is an automorphism of R that reduced to identity mod \mathfrak{m} .

If k is perfect, there is a functor of Witt vectors from the category of perfect fields of characteristic p to that of Cohen p-rings, splitting the functor of taking reduction mod p, and it is unique up to unique isomorphism. The functor uniquely extends to a functor from the category of perfect (Frobnius map is an isomorphism) \mathbb{F}_p -algebras to that of p-adically complete ($A \cong \varprojlim A/p^rA$) flat (torsion-free) \mathbb{Z}_p -algebras with A/pA perfect.

Example:
$$W(\mathbb{F}_{p^r}) = \mathbb{Z}_p(\zeta_{p^r-1}), W(\overline{\mathbb{F}_p}) \cong \mathcal{O}_{\mathbb{Q}_p^{ur}}.$$

p-adic expansions: If $x,y\in A$, $x-y\in p^rA$ for some $r\geq 1$, then $x^p-y^p\in p^{r+1}A$ (expand $(x-y)^p$). There is a unique map $[]:A/pA\to A$ preserving multiplication such that $[x]\mod p=x$ and [x] has p^n -th root for all $n\geq 1$.

The idea is to construct a Cauchy sequence that reduces to x. Take $y_n \in A/pA$ such that $y_n^{p^n} = x$ (which exists since A/pA is perfect). Pick any lift $\tilde{y_n} \in A$, then $\tilde{y_n}^{p^n} - \tilde{y_{n+1}}^{p^{n+1}} \in p^{n+1}A$. By completeness of A, $\{\tilde{y_n}^{p^n}\}$ converges.

Since A is flat, we can divide by p and get a p-adic expansion $x=[x_0]+p[x_1^{1/p}]+p^2[x_2^{1/p}]+\dots$

The question is that if we can write down z=x+y using x_i and y_i . First $z_0=x+y \mod p=x_0+y_0$. Then $z_1^{1/p}=\frac{x+y-[z_0]}{p}\mod p=([x_1^{1/p}]+[y_1^{1/p}]+\frac{[x_0]+[y_0]-[x_0+y_0]}{p})\mod p$. Raising both sides to the p-th power, then we get $z_1=x_1+y_1+\frac{x_0^p+y_0^p-(x_0+y_0)^p}{p}$. So on and so forth.

For multiplication w=xy, we similarly expand and find out $w_1=x_0^py_1+x_1y_0^p$. In general, given $\Phi(u,v)\in\mathbb{Z}[u,v]$, we can find $\Phi(x,y)=t=\sum_{i=0}^\infty p^i[t_i]^{1/p^i}$ such that $t_i=\Phi_i(x_0,...x_i,y_0,...y_i)$ is a polynomial over \mathbb{Z} independent of A.