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If the characteristic of the coefficient field is the same as that of the residual

characteristic of the local field, we need tools from -adic Hodge theory.

Cohen structure theorem: Suppose  is equal characteristic CDVR

(complete discrete valuation ring). Then the canonical ring homomorphism 

 splits ring theoretically, i.e. there exists subring  such

that  is an isomorphism, and any choice of  induces 

. When  is mixed characteristic , in this case, there is a

coefficient subring  with the following property: 1.  is a CDVR with

residue field isomorphic to  via . 2.  is absolutely unramified,

i.e. unramified over , or . This  is determined up to isomorphism

by , but not uniquely/functorially. Such a coefficient ring is also called Cohen 

-ring.

If  is not perfect, then  can be very noncanonical. For example, if we take 

, and . Then  is a CDVR with unique maximal ideal 

 and . But  is an automorphism of  that reduced to

identity mod .

If  is perfect, there is a functor of Witt vectors from the category of perfect

fields of characteristic  to that of Cohen -rings, splitting the functor of taking

reduction mod , and it is unique up to unique isomorphism. The functor

uniquely extends to a functor from the category of perfect (Frobnius map is an

isomorphism) -algebras to that of -adically complete ( ) flat

(torsion-free) -algebras with  perfect.

Example: , .

-adic expansions: If ,  for some , then 

 (expand ). There is a unique map 

preserving multiplication such that  and  has -th root for all 

.

The idea is to construct a Cauchy sequence that reduces to . Take 

such that  (which exists since  is perfect). Pick any lift ,

then . By completeness of ,  converges.

https://functor.network/user/3126/entry/1418
https://functor.network/user/3126/entry/1418
https://functor.network/user/3126/entry/1418
https://functor.network/user/3126
https://en.wikipedia.org/wiki/Witt_vector


Since  is flat, we can divide by  and get a -adic expansion 

.

The question is that if we can write down  using  and . First 

. Then 

. Raising

both sides to the -th power, then we get . So on

and so forth.

For multiplication , we similarly expand and find out .

In general, given , we can find 

such that  is a polynomial over  independent of .

The idea is to we can use the representative  as coefficient, but they

do not have good properties (not closed under addition or multiplication), while

the Teichmuller representatives are closed under multiplication.

We now turn the process around and use the universal polynomials to construct 

 from .

Important maps: Teichmuller  mapping  to  which is

multiplicative. Then for , we can write it as . Since

, we see that  is not a zero divisor.

Frobenius map  given by  and

Verschiebung  given by  and by

definition we have .

We define  (keeping only the first -coordinates) and

we have  which implies  is -adic complete and its

reduction mod  is . Since the universal polynomials  is independent in 

, the Witt vector construction is functorial in . In particular,  is

canonically a -algebra. Since  is not zero divisor in , it is a flat -

algebra.

If  is a -adic complete flat -algebra with perfect , then any -

homomorphism  uniquely lifts to  given by 

. Note that even when  is not defined for

all elements  (e.g.  is not perfect), it is defined for 

 for . Moreover, if  is flat over  or  for some 

(implying  or ), then the same universal polynomial for 

and  can still make sense in . Thus  is still a ring homomorphism

as long as  is a -adic complete -algebra and flat over  or  for some 

. However, note that  is not isomorphic to  since it is not flat (see

criterion below).



For perfect -algebra ,  can be thought of as the unique deformation of

 to a -adic complete flat -aglebra. The argument is based on deformation

theory, using  (essentially boils down to the derivative of  is

zero).

Remark: There is an explicit creiterion that  is perfect iff  flat over 

 (since the flatness is equivalent to  being

exact, where the first map given by  and the second one given by 

).

Hodge-Tate and de Rham’s representation: Let  and  and 

similarly. We have . It is certainly not discretely valued. Note that

we have  (allows the use of almost mathematics).

The ring  is an example of perfectoid field (a complete topological field 

with topology induced by a non-discrete valuation such that the arithmetic

Frobenius  is surjective). Here is a quick summary of some

results on perfectoid fields, for details see Scholze’s original paper.

A perfectoid field of characteristic  is the same as a complete perfect

nonarchimedean field. The non-discrete valuation condition guarantees that the

value group is -divisible. It is related to the notion of deeply ramified fields.

Next we describe the process of tilting for perfectoid fields, which is a functor

that takes as input a perfectoid field and produce a perfectoid field in

characteristic .

Choose any  such that . Define 

where  is the Frobenius morphism (note that  is a highly nonreduced 

-algebra and by taking inverse limit we have made  into a perfect ring of

characteristic ). Equip it with the inverse limit topology where each  is

given the discrete topology. We first claim there is a map . This

map is similar to the construction of Teichmuller representative (this just uses

that ). So similar to ,  is multiplicative and continuous. Using  we can

further define  by  which is inverse to

the projection map. This shows that the two inverse limits are isomorphic as

topological multiplicative monoid.

Secondly, There is an element  such that  (pick any 

 with  and choose any sequence ). If

we define , then  extends to  (note that it is

harmless to replace  by ), which is easily seen to be a homeomorphism.

In particular  is a field. The topology on  is induced .

https://arxiv.org/pdf/1111.4914


Fact: Finite extension of perfectoid field is perfectoid and the tilting functor 

 defines an equivalence of category between finite extensions of  and

finite extensions (Theorem 3.7), the proof of which uses almost mathematics, the

key being the following string of equivalences of categories:

In particular, . For example, if we take , then 

. The reduction  is isomorphic (multiplicatively) to 

 mod . Note that the absolute Galois group of  is just  since

taking -th root of  gives purely inseparable extensions.

We are interested in  representations of the form , but since 

 acts on  (since ), it is not a -linear representation, but rather a

semi-linear representation. There is a standard recipe to build semi-linear

representations, namely if  is a ordinary linear representation and 

 is an -algebra such that  acts on  (e.g.  and ) then

 is a semi-linear representation. In particular, if  is a

character, then  is a semilinear representation defined by 

.

We call a -semilinear representation is trivial if it is isomorphic to  for

some . Note that -semi-linear representation of  is trivial if and only if it

admits a basis of vectors which are fixed by . In particular, it is quite possible

that a nontrivial semi-linear representation becomes trivial after scalar extension.

Given , we denote by  the subset of  consisting of fixed

points under , Clearly  is a module over . Moreover scalar extension

provides a canonical morphism in : 

This is useful for recognizing trivial semi-linar representations since if  is

trivial,  will be an isomorphism by virtue of . The converse

holds when  and  are free of finite rank over  and  respectively (the

intuition is that we can detect a trivial -semi-linear representation arise from a

trivial -linear representation).

If  is finite acting on a field , then  is a finite Galois extension with

Galois group . Hilbert 90 can be reformulated by saying that 

 is always surjective, and if  is finite-dimensional, then 

 is bijective,  is trivial semi-linear representation, see this survey paper,

Theorem 1.3.3 for details. Note that this fails if  is an infinite extension,

e.g. , since there is no  such that  for every 

, see Example 1.3.5 for detail.

https://arxiv.org/pdf/1908.08424


Now we come to an important definition, a finite-dimensional representation 

 is -admissible if  is trivial. A numerical criterion for

recognizing -admissible representations is that 

, provided  satisfies some

requirements (Proposition 1.4.4).

Fact: Let  be a -linear finite dimensional representation of . Then  is 

-admissible if and only if the inertia subgroup of  acts on  through a

finite quotient (Theorem 1.4.6). Thus, -admissibility detects those

representations which are potentially unramified. In particular, the cyclotomic

character  are not -admissible. Then  is Hodge-Tate iff it is -

admissible.

A larger class of -representations: A -linear finite-dimensional

representation  of  is Hodge-Tate if 

. This fits into the framework of -admissibility as follows: Let 

 and .

Theorem 1.4.6 is the starting point for studying Hodge–Tate representations. For

example, it implies that the integers ’s that appeared above are uniquely

determined up to permutation (Proposition 2.2.8). They are called the Hodge–

Tate weights of the representation . Finally, Hodge-like decomposition

theorems show that many representations coming from geometry are Hodge–

Tate.

Unfortunately, Hodge–Tate representations have several defaults. First, they are

actually too numerous and, for this reason, it is difficult to describe them

precisely and design tools to work with them efficiently. The second defect of

Hodge–Tate representations is of geometric nature. Indeed, tensoring the etale

cohomology with  (or equivalently, with ) captures the graded module of

the de Rham cohomology. However, it does not capture the entire complexity of

de Rham cohomology, the point being that the de Rham filtration does not split

canonically in the -adic setting.

In order to work around this issues, Fontaine defined other period rings  ‘finer’

than . The most classical period rings introduced by Fontaine are 

; the corresponding admissible representations are called

crystalline, semi-stable and de Rham respectively. Moreover,  is a filtered

field whose graded ring can be canonically identified with . This property,

together with the aforementionned inclusions, imply the following implications

(since if , or  is an algebra over  and  is -admissible, then it

is  admissible): crystalline implies semi-stable implies de Rham implies

Hodge–Tate.



Rapidly, let us say here that representations coming from the geometry, i.e. of

the form  where  is a smooth projective algebraic variety over 

, are all de Rham. By definition, this means that the space 

 has the correct dimension. It turns out that this space

has a very pleasant cohomological interpretation: it is canonically isomorphic to

the de Rham cohomology of , namely . We thus get an isomorphism: 

The introduction of  resolves elegantly the geometric issue we have pointed

out earlier. However, the class of -admissible representations is still rather

large and not easy to describe. The ring  is a subring of  which is

equipped with more structures and provides very powerful tools for describing

crystalline representations. On the geometric side, crystalline representations

correspond to the etale cohomology of varieties with good reduction and the

space  is related to the crystalline cohomology of

(the special fibre of a proper smooth model of , equipped with its Frobenius

endomorphism.

Let  and . It has a strong geometrical

interpretation observed first by Colmez and then by Fargues–Fontaine and

Scholze that  appears at a mixed characteristic analogue of the ring of

bounded analytic functions on the open unit disc. There is an important map 

 lifting . Concretely, it is given by 

The kernel  is a principal ideal generated by . It turns out the

element  also generates , where  is a compatible system of 

-th power roots of unity.

We now define  and .

The key feature of  is that it’s a CDVR with residue field  (see Tony

Feng’s thesis, Prop. 8.18). We equip  with the topology from  (so that it

induce the usual topology on . There is a special element in  that is a

period for the cyclotomic character, i.e.  acts by multiplication by ,

namely . Note that the -line generated by  is independent of the

choice of , which can be thought of as analogous to  in complex analysis,

and the element  as analogous to a choice of .

Fact:  is a uniformizer for  and thus the associated graded algebra of  is

isomorphic (Galois-equivariantly) to .

https://math.berkeley.edu/~fengt/hodge_tate.pdf
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One idea to create  is that we want to functorially build a complete discrete

valuation ring with residue field  of characteristic 0. Naturally the Witt vector

construction comes to mind, but we need to be more artful here since we are in

the equicharacteristic zero situation. Note that any complete discrete valuation

ring with residue field  of characteristic  is abstractly isomorphic to  by

commutative algebra, such a structure will not exist for  in a -equivariant

manner. Rather than trying to directly make a canonical complete discrete

valuation ring with residue field , we observe that  which is

closely related to -power torsion rings. Hence, it is more promising to try to

adapt Witt-style constructions for  than for . We will make a certain

height-  valuation ring  of equicharacteristic  whose fraction field 

is algebraically closed (hence perfect) such that there is a natural -action on 

 and a natural surjective -equivariant map . (Note that 

, so  is a domain of characteristic 0.) We would

then get a surjective -equivariant map .

Since  is like a 1-dimensional ring,  is like a 2-dimensional ring and so 

 is like a 1-dimensional ring. The ring structure of  is generally

pretty bad if  is not a perfect field of characteristic , but as long as the

maximal ideal  is principal and nonzero we can replace  with

its -adic completion to obtain a canonical complete discrete valuation

ring  having residue field .

Reference: https://math.stanford.edu/~conrad/papers/notes.pdf
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