automorphy lifting lecture 7-9

J'ignore • 24 Sep 2025

The space of cuspidal automorphic forms $\mathcal{A}_0(GL_n(F)\setminus GL_n(\mathbb{A}_F))$ is the set of all (complex-valued) functions $\varphi:GL_n(F)\setminus GL_n(\mathbb{A}_F)\to \mathbb{C}$ such that

- φ is smooth (i.e. locally constant in the finite places and smooth in the infinite places);
- φ is K-finite/admissible (The space of right translates under right translates by product of maximal compact subgroups (speficied as follows) is finite-dimensional. For the finite places, we use $GL_n(\widehat{\mathcal{O}_F})$ where $\widehat{\mathcal{O}_F}$ is the profinite completion of \mathcal{O}_F , so it is $\prod_v \mathcal{O}_{F,v}$. For the infinite places, we use $U_\infty = \prod_{v \mid \infty} U_v$ where U_v is a maximal compact subgroup of $GL_n(F_v)$, required to be O(n) when v is real and U(n) when v is complex.);
- φ is \mathfrak{h} -finite (should be treated together with the previous condition at infinite place; here \mathfrak{h} is the center of the universal envelopping algebra $\mathcal{U}(\mathfrak{g})$ where $\mathfrak{g}:=Lie(GL_n(F_\infty))\otimes\mathbb{C}$ and the action is by $(X\varphi)(g)=\frac{d}{dt}|_{t=0}(\varphi(g\exp(tX)))$ and extended to $\mathcal{U}(\mathfrak{g})$ by universal property, c.f. the Harish-Chandra isomorphism);
- φ is slowly increasing (polynomial growth);
- φ is cuspidal (integral of the left-translates $\varphi(ug)$ along every unipotent radical of the standard parabolic subgroup vanishes);

The space $\mathcal{A}_0(GL_n(F)\setminus GL_n(\mathbb{A}_F))$ is not quite a representation of $GL_n(\mathbb{A}_F)$, because U_{∞} -finite is not preserved under right translation by g (instead it is $gU_{\infty}g^{-1}$ -finite; note that there is no problem at finite places). However it does admits an action by $GL_n(\mathbb{A}_F^{\infty})\times U_{\infty}$ and an action by \mathfrak{g} , and they are related by

$$g(X\varphi) = (ad(g_{\infty})X)(g\varphi).$$

Another remark is that in the non-Archimedean case requring K-finite is the same as admissibility (the space of fixed vectors of any compact open subgroup is finite-dimensional), and the latter is more convenient since we don't need to keep track of isotypic components (see Getz, Intro to Automorphic representations, Prop. 5.3.11).

A third remark is that automorphic representations are factorizable, i.e. an irreducible $\pi = \otimes'_v \pi_v$ (Flath's theorem, see Theorem 5.7.1 for a proof).

The center $\mathfrak{h}=\otimes_{\tau:F\to\mathbb{C}}\mathfrak{h}_{\tau}$ of the universal envelopping algebra at infinite places act by π by scalars. By the Harish-Chandra isomorphism, we have $\mathfrak{h}_{\tau}\cong\mathbb{C}[x_1,...x_n]^{S_n}$, so each τ gives us n complex numbers. We make the following definition: If $HC_{\tau}\subseteq\mathbb{Z}$ for each τ , then it is algebraic. If it has n distinct elements for each τ , then it is regular. The regular algebraic representations are accessible via topology since they appear in the Betti cohomology of the symmetric space $GL_n(F)\setminus GL_n(\mathbb{A}_F)/K$ for some choice of compact subgroup K.

The case n=1 of Global Langlands is a reformulation of class field theory. A cuspidal automorphic representation of GL_1 is just a continuous character $\chi: F^\times\setminus \mathbb{A}_F^\times \to \mathbb{C}^\times$. The algebraicity condition says that $\chi|_{(F_\infty^\times)^\circ}$ looks like $x\mapsto \prod_{\tau:F\to\mathbb{C}}\tau(x)^{-n_\tau}$ for some integers n_τ . From χ we would like to produce a Galois representation. First we define $\tilde\chi: \mathbb{A}_F^\times \to \mathbb{C}^\times$ by $\tilde\chi:=\chi(x)\prod_{\tau:F\to\mathbb{C}}\tau(x)^{n_\tau}$ (note this no longer trivial on F^\times , but it takes F^\times to $\overline{\mathbb{Q}}^\times$). By continuity of the character, it is invariant by some open compact subgroup $U\subset \mathbb{A}_F^\times$ and also on $(F_\infty^\times)^\circ$ by construction. A fundamental fact is that any quotient $\mathbb{A}_F^\times/F^\times U(F_\infty^\times)^\circ$ is finite, so $\tilde\chi$ is valued in $\overline{\mathbb{Q}}^\times$ on the entire \mathbb{A}_F^\times .

We can now use the isomorphism $\eta:\mathbb{C}\to\overline{\mathbb{Q}_p}$ (restricted to $\overline{\mathbb{Q}}^{\times}$) to make $\tilde{\chi}$ valued in $\overline{\mathbb{Q}_p}$ and then modify it at the places above p to make it invariant by F^{\times} by undoing the integral twist:

$$\chi^{(p)} = \eta \circ \tilde{\chi}(x) \prod_{\tau: F \to \overline{\mathbb{Q}_p}} \tau(x_p)^{-n_{\eta^{-1} \circ \tau}}$$

Since this involves places above p, the character $\chi^{(p)}$ will factor through $\mathbb{A}_F^{\times}/\overline{F^{\times}(F_{\infty}^{\times})^{\circ}} \xrightarrow{\cong} G_F^{ab}$.

Similarly, starting from an algebraic p-adic Hecke character, we can get a complex valued algebraic Hecke character. One thing to note is that the image of $\tilde{\chi}$ lies in a number field. First, the image of \mathbb{A}_F^{\times} under $\prod_{\tau:F\to\overline{\mathbb{Q}_p}}\tau(x)^{n_{\tau}}$ lies in F^{Gal} , the Galois closure of F (the image of F^{Gal} is independent of choice of the embedding $\overline{\mathbb{Q}}\to\overline{\mathbb{Q}_p}$). At other places the image of $\tilde{\chi}$ is unchanged. For the infinite place, we must have $\chi|_{(F_{\infty})^{\times,\circ}}=1$ since the target is totally disconnected. For finite places $v\nmid p$, the incompatibility of the profinite topologies implies that there is an open neighborhood of 1 such that χ is trivial. Hence by compactness of $\mathcal{O}_{F_v}^{\times}$, the image $\chi(\mathcal{O}_{F_v}^{\times})$ is finite, hence it has image in roots of unity μ_{∞} . Since $U_1\cap\mu_{\infty}=\{1\}$ where U_1 is the open subgroup $1+\varpi\mathcal{O}_{\overline{\mathbb{Q}_p}}$. Thus $\ker(\chi|_{\prod_{v\nmid p}\mathcal{O}_{F_v}^{\times}})=\chi^{-1}(U_1\cap\mu_{\infty})$ is an open compact subgroup, so it has finite index by compactness of $\prod_{v\nmid p}\mathcal{O}_{F_v}^{\times}$. Thus for all but finitely many places, the restriction of χ is trivial (more generally any

automorphic representation is unramified almost everywhere, see Flath's theorem mentioned above). By putting the behaviour at $v \mid \infty$, $v \mid p$, $v \nmid p$, ∞ we see that $\tilde{\chi}$ is locally constant with open kernel \mathcal{U} . Since \mathcal{U} contains $(F_{\infty})^{\times,\circ}$, we see that the double coset $F^{\times} \setminus \mathbb{A}_F^{\times}/\mathcal{U}$ is finite since replacing \mathcal{U} by $(F_{\infty})^{\times,\circ}$ the double coset is compact. That means there exists finitely many g_i such that the value of $\tilde{\chi}$ is determined by its restriction to $F^{\times}, \mathcal{U}, g_i$, this implies that the image of the character lies in some number field $E \subset \overline{\mathbb{Q}}$.

This means that the Hecke character χ differs from a character $\tilde{\chi}$ taking values in number field by a very simple algebraic character. Without algebraicity, automorphic representations naturally form families in real or complex topology, e.g. twisting by $||^s$, on the other hand p-adic Galois characters form families in p-adic topology. In order to state Langlands reciprocity, we need to either impose such algebraicity condition or introduce more general objects on both sides.

If F is a number field, then for each place v of F, recall $\mathcal{O}_{F_v}^{\times}=\{x\in F_v:|x|_v=1\}$, and $\mathfrak{m}_{F_v}=\{x\in F_v:|x|_v<1\}$. Define $\mathcal{O}_{\overline{F_v}}$ and $\mathfrak{m}_{\overline{F_v}}$ similarly, and $\overline{k_v}=\mathcal{O}_{\overline{F_v}}/\mathfrak{m}_{\overline{F_v}}$. The difference is that this is not discretely valued and also $\mathfrak{m}_{\overline{F_v}}^2=\mathfrak{m}$.

For a (not necessarily finite) extension E/F, we say it is unramified at $w \mid v$ if I_{F_v} has image 1 in Gal(E/F). More generally, a continuous homomorphism $\rho: G_F \to H$ where H is a topological group is unramified at $w \mid v$ if $\rho(I_{F_v}) = 1$, i.e. $\rho(Frob_v)$ is defined (depending on the emdedding of the local Galois group into the global Galois group, but the conjugacy class of $\rho(Frob_v)$ is well-defined).

For any subset of places P of F, We say P has density δ if

$$\lim_{N \to \infty} \frac{|\{v \in P : \#k_v \le N\}|}{|\{v : \#k_v \le N\}|} = \delta$$

. By Prime Number theorem, the denominator is $\sim N/\log N$.

Recall Cebotarev density theorem, if X is a union of conjugacy classes in H=Gal(E/F), the set of places whose Frobenius lies in X has density |X|/|H|. The first corollary is that each $h\in Gal(E/F)$ is the Frobenius elements of infinitely many unramified places of E. The second corollary is the for E/F Galois but not necessarily finite, Frobenius elements of unramified places of E are dense in Gal(E/F).

If k is a characteristic zero field, then for any ρ_1 , ρ_2 two irreducible semisimple (direct sum of irreducible) finite-dimensional representations of k-algebra Λ with $tr(\rho_1)=tr(\rho_2)$, then $\rho_1\cong\rho_2$ (Bourbaki, Ch 8, chapter 12, section 1, prop. 3). Combined with Cebotarev density theorem, we get that if ρ_1,ρ_2 are

continuous semisimple representations such that both are unramified outside a given finite subset of places, then $\rho_1 \cong \rho_2$ iff $char(\rho_1(Frob_v)) = char(\rho_2(Frob_v))$.

We say E/F_v is tamely ramified if $p \nmid e$. There is a maximal unramified (resp. tamely ramified) extension F^{nr} and F^{tr} of F_v in $\overline{F_v}$. If we let ϖ be any uniformizer of F_v , then $F_v^{nr} = \bigcup_{p \nmid m} F_v(\mu_m)$. Similarly, $F_v^{tr} = \bigcup_{p \nmid m} F_v^{nr}(\varpi^{1/m})$. Let $P_{\overline{F_v}}$ be the wild inertia (whose retriction to F_v^{tr} is trivial), it is a pro-p-group, and the quotient of I_{F_v} is $Gal(F_v^{tr}/F_v^{ur}) \stackrel{t}{\cong} (\overline{k_v})^\times \cong \prod_{p \mid \ell} \mathbb{Z}_\ell(1)$ (the identification is via the Kummer map). Under this identification, we have $t(Frob_v\sigma Frob_v^{-1}) = |k_v|^{-1}t(\sigma)$ (by considering the action of geometric Frobenius on roots of unity)

Reference:

For topology on adelic point of algebraic groups: Brian conrad's paper https://math.stanford.edu/~conrad/papers/adelictop.pdf

For restriction of scalar: appendix of Conrad-Gabber-Prasad