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The space of cuspidal automorphic forms  is the set of

all (complex-valued) functions  such that

 is smooth (i.e. locally constant in the finite places and smooth in the

infinite places);

 is -finite/admissible (The space of right translates under right

translates by product of maximal compact subgroups (speficied as

follows) is finite-dimensional. For the finite places, we use 

where  is the profinite completion of , so it is . For the

infinite places, we use  where  is a maximal compact

subgroup of , required to be  when  is real and  when

 is complex.);

 is -finite (should be treated together with the previous condition at

infinite place; here  is the center of the universal envelopping algebra 

 where  and the action is by 

 and extended to  by universal

property, c.f. the Harish-Chandra isomorphism);

 is slowly increasing (polynomial growth);

 is cuspidal (integral of the left-translates  along every unipotent

radical of the standard parabolic subgroup vanishes);

The space  is not quite a representation of ,

because -finite is not preserved under right translation by  (instead it is 

-finite; note that there is no problem at finite places). However it does

admits an action by  and an action by , and they are related by 

Another remark is that in the non-Archimedean case requring -finite is the

same as admissibility (the space of fixed vectors of any compact open subgroup

is finite-dimensional), and the latter is more convenient since we don’t need to

keep track of isotypic components (see Getz, Intro to Automorphic

representations, Prop. 5.3.11).
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A third remark is that automorphic representations are factorizable, i.e. an

irreducible  (Flath’s theorem, see Theorem 5.7.1 for a proof).

The center  of the universal envelopping algebra at infinite places

act by  by scalars. By the Harish-Chandra isomorphism, we have 

, so each  gives us  complex numbers. We make the

following definition: If  for each , then it is algebraic. If it has 

distinct elements for each , then it is regular. The regular algebraic

representations are accessible via topology since they appear in the Betti

cohomology of the symmetric space  for some choice of

compact subgroup .

The case  of Global Langlands is a reformulation of class field theory. A

cuspidal automorphic representation of  is just a continuous character 

. The algebraicity condition says that  looks like 

 for some integers . From  we would like to produce a

Galois representation. First we define  by 

 (note this no longer trivial on , but it takes  to 

). By continuity of the character, it is invariant by some open compact

subgroup  and also on  by construction. A fundamental fact is that

any quotient  is finite, so  is valued in  on the entire .

We can now use the isomorphism  (restricted to ) to make 

valued in  and then modify it at the places above  to make it invariant by 

by undoing the integral twist: 

Since this involves places above , the character  will factor through 

.

Similarly, starting from an algebraic -adic Hecke character, we can get a

complex valued algebraic Hecke character. One thing to note is that the image of

 lies in a number field. First, the image of  under  lies in 

, the Galois closure of  (the image of  is independent of choice of the

embedding ). At other places the image of  is unchanged. For the

infinite place, we must have  since the target is totally

disconnected. For finite places , the incompatibility of the profinite

topologies implies that there is an open neighborhood of  such that  is trivial.

Hence by compactness of , the image  is finite, hence it has image in

roots of unity . Since  where  is the open subgroup 

. Thus  is an open compact

subgroup, so it has finite index by compactness of . Thus for all but

finitely many places, the restriction of  is trivial (more generally any
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automorphic representation is unramified almost everywhere, see Flath’s

theorem mentioned above). By putting the behaviour at , , 

we see that  is locally constant with open kernel . Since  contains ,

we see that the double coset  is finite since replacing  by 

the double coset is compact. That means there exists finitely many  such that

the value of  is determined by its restriction to , this implies that the

image of the character lies in some number field .

This means that the Hecke character  differs from a character  taking values

in number field by a very simple algebraic character. Without algebraicity,

automorphic representations naturally form families in real or complex topology,

e.g. twisting by , on the other hand -adic Galois characters form families in 

-adic topology. In order to state Langlands reciprocity, we need to either

impose such algebraicity condition or introduce more general objects on both

sides.

If  is a number field, then for each place  of , recall 

, and . Define  and 

 similarly, and . The difference is that this is not discretely

valued and also .

For a (not necessarily finite) extension , we say it is unramified at  if 

 has image  in . More generally, a continuous homomorphism 

 where  is a topological group is unramified at  if 

, i.e.  is defined (depending on the emdedding of the local

Galois group into the global Galois group, but the conjugacy class of 

is well-defined).

For any subset of places  of , We say  has density  if 

. By Prime Number theorem, the denominator is .

Recall Cebotarev density theorem, if  is a union of conjugacy classes in 

, the set of places whose Frobenius lies in  has density 

. The first corollary is that each  is the Frobenius

elements of infinitely many unramified places of . The second corollary is the

for  Galois but not necessarily finite, Frobenius elements of unramified

places of  are dense in .

If  is a characteristic zero field, then for any ,  two irreducible semisimple

(direct sum of irreducible) finite-dimensional representations of -algebra 

with , then  (Bourbaki, Ch 8, chapter 12, section 1, prop.

3). Combined with Cebotarev density theorem, we get that if  are



continuous semisimple representations such that both are unramified outside a

given finite subset of places, then  iff 

.

We say  is tamely ramified if . There is a maximal unramified (resp.

tamely ramified) extension  and  of  in . If we let  be any

uniformizer of , then . Similarly, .

Let  be the wild inertia (whose retriction to  is trivial), it is a pro- -group,

and the quotient of  is  (the

identification is via the Kummer map). Under this identification, we have 

 (by considering the action of geometric

Frobenius on roots of unity).

Let  denote the projection to the -th place. To compare

representations with coefficient in different characteristic, we need to remove the

influence of topology. If we are considering -adic representations of the local

Galois group at  and , then the wild inertia will have finite image since

the characteristic doesn’t match. But the tame inertia (projection to the -th

place) could have infinite image. Grothendieck’s -adic monodromy theorem

allows us to describe what this image look like and leads to the notion of Weil-

Deligne representation.

Given continuous representation  or 

 where  for some . Then there exists open

subgroup  (of finite index) such that  is unipotent for all 

.

Let  or . As explained before there exists  finite extension

and a finite index subgroup  such that 

. Since  is a pro-  group, 

 factors through . Since  depends only on , and  is

conjugate to  for . Let 

(which converges by the choice of ). Then  is conjugate to 

. If  is the -th coefficeint of the characteristic

polynomial, then . If for some  we have 

 for all , then  has finite order, but this contradict the key

assumption that  satisfies. Hence we must have for  for every 

. Thus the characteristic polynomial is just , i.e.  is

nilpotent.

Thus we can write  for some nilpotent representation 

, i.e. a nilpotent matrix  such that for any

lift  of  we have .



Recipe: Choose any lift  of  and  (i.e. a system of 

-th root of unity) inducing . Define 

 and . Such a pair 

 is a Weil-Deligne representation. The formal definition is as follows:

Let  be any field. A Weil-Deligne representation of  is a pair 

where  is a continuous representation where 

(equipped with the discrete topology) and  nilpotent such

that for all lifts  of , we have .

(Deligne) There is an equivalence of categories:

Intuition: Think of  as a punctured disk with  the puncture. The Galois

group  is the fundamental group. The puncture has fundamental group

generated by the Frobenius. The kernel  control the monodromy. The key

assumption satisfied by  is that no finite extension of  contains all -th

power of unity.

A -representation  is unramified if  and . We say 

 is Frobenius-semisimple if  is simisimple. Any  has a Frob-

semisimplification : Pick any lift  of , and write 

. Then we define  with 

 (so we only semisimplify the action of the Frobenius, but 

 has finite order because of continuity hence also semisimple; it is useful

since most of the time we only know the characteristic polynomial).

Note that we use the fact that the coefficient field has characteristic zero.

Otherwise we need to impose semisimplicity assumption on .

Reference:

For topology on adelic point of algebraic groups: Brian conrad’s paper https://

math.stanford.edu/~conrad/papers/adelictop.pdf

For restriction of scalar: appendix of Conrad-Gabber-Prasad
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