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Let  be the set of unipotent elements. This is a closed subset and hence

an algebraic (affine) variety. Note that  acts on  by conjugation, the orbits

of which are called unipotent orbits. We will see later that if  is reductive then

there are finitely many unipotent orbits. In the case of , it is due to Dynkin-

Kostant. In the case of , it is proved by Richardson (classical groups) and

Lusztig (exceptional groups). This is one of Lusztig’s motivation, that is to give

a uniform proof of finiteness of unipotent orbits using Deligne-Lusztig theory.

In the case of , nilpotent matrices are those with determinant and trace zero.

Thus  can be identified with , sending  to 

, which looks like a cone with singularity at origin. There are two

unipotent orbits: the identity and the conjugacy class of . In  over

the complex numbers, the number of conjugacy classes is the number of

partitions of  by Jordan normal form.

Every elements of torus is semisimple. One proof over  is use the criterion

that an element is semisimple iff its order is coprime to  and unipotent if its

order is a power of . A characterization of torus is that  is a torus iff  is

connected commutative algebraic group consisting of semi-simple elements. The

idea is that we can choose a closed embedding of  into the diagonal torus, and

it remains to show that closed connected subgroups of the diagonal torus is of

the form  for some .

Let  be a torus. The Weyl group  is finite (proof is highly

nontrivial).

Below are some facts from the theory of algebraic groups:

Irreducible iff connected iff geometrically irreducible iff geometrically

connected;
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geometrically reduced iff smooth (This is because of generic smoothness and

homogeneity); But reduced need not imply geometrically reduced over

nonperfect fields. The identity component is geometrically connected (since it

contains a rational point, see here, Lemma 33.7.14 for a proof.)

Let  be an algebraic group. There exists a maximal torus  (with respect

to inclusion).

The following is an important theorem: Any maximal torus in  are all

conjugate to each other. In the case of compact Lie groups, this follows from

Lefschetz fixed-point formula due to Hermann Weyl, in the case of algebraic

groups, this follows from Borel fixed-point formula.

Assume  is defined over . A maximal torus of  is a subgroup of the form 

 where  is a maximal torus stable under . For any , then 

 is again a maximal torus.

The natural question is to classify maximal torus in  up to -conjugacy. For

 the diagonal maximal torus  is -stable. Let  be a -stable torus, then

we can write , then we can check that  for 

to be -stable. Since , where  is antidiagonal matrix with all

ones. Thus  is isomorphic to  by sending 

to  (the condition that  is fixed by Frobenius means that 

). If  (or more generally ) then this is

just  but we get something new; but if , then 

. So we get two 

-conjugacy classes of , but we need to ensure that we can find 

such that . This is eassy, e.g. take , then 

.

From the above discussion we also see that it is important to consider the

function  and the level set  for  where  is

the Weyl group . This is precisely the Deligne-Lusztig variety .

Some preliminaries on reductive groups:

(Kolchin’s theorem) If  is a unipotent group, then there exists 

 such that  the standard unipotent group. Equivalently,

there exists a complete flag fixed by  and .

(Lie-Kolchin’s theorem) Let  be a connected solvable group. Then

there exists  such that  the upper triangular Borel

subgroup. Equivalently, there exists a complete flag fixed by .
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The first theorem is equivalent to the assertion that any representation of a

unipotent group has a fixed vector. Similarly, the second theorem is equivalent to

the assertion that any represention of a connected solvable group has a fixed

line.

Another remark is that although Kolchin’s theorem holds true for any field  but

Lie-Kolchin does not, e.g. the standard representation  has no fixed

lines.

Kolchin’s theorem also implies that unipotent groups are nilpotent as abstract

group. The following gives a structure theorem of connected solvable groups:

Let  be a connected solvable group, then  is a connected normal subgroup

of  and  where  is a maximal torus. Moreover, 

.

As a corollary, we have . It is actually remarkable that the quotient

has an algebro-geometric structure.

Now we get to the notion of reductive groups. Let  eb a connected algebraic

group. The radical  is the maximal connected, solvable, normal subgroup

of . The unipotent part  is called the unipotent radical.  is called

reductive if  and  is called semisimple if .

If , then  is reductive iff any representation of  is a direct sum of

irreducibles. All the classical groups ,  and  are reductive. The

proof in the case of  consists of showing  is equal to  where 

 acts on  via the standard representation. By Kolchin’s theorem we can

find . but since  is normal,  is acted on by  and so 

by transitivity of the action. For other classical groups use the same trick.

Reductive essentially means the group is an extension of torus by semisimple

groups (and also the finite component group if we consider discconected

reductive groups.)

Borel subgroups: Let  be a conneccted algebraic group. A subgroup  is Borel

if  is maximal among all connected solvable subgroups (no normality). 

 is Borel (Exercise). By Lie-Kolchin theorem, any Borel subgroup 

is of the form  for some . Also,  (Exercise). There

is a set bijection between  to the set of Borel subgroups of  by

sending  to . On the other hand, there is a geometric

interpretation of  as the set of complete flags in , and this turns out to

have the structure of a projective variety.

For a split torus, the character group  is defined to be  and

the cocharacter group  is . Both are free -modules. In the

nonsplit case we define  to be , which is equipped with a discrete



action of  (via action on both domain and codomain, see this answer

for an example. This turns out to be an equivaluence between category of -tori

and category of discrete -modules.

Sketch why an affine algebraic group admits a closed immersion into some 

: An action of an affine algebraic group on a vector space (possibly infinite-

dimensional) can be defined as a natural transformation , so it is

the same as a functorial action of  acting on  for each -algebra .

The idea is that  acts on the coordinate ring , but  is infinite-

dimensional. However, it turns out that the action is via a -algebra

automorphism, so we are done if we can show that the finite number of

generators is contained in a finite-dimensional -stable subspace. This turns out

to reduced to the associativity axiom of a group action, for details see this

handout, section 12.2.

Key lemma in showing Jordan decomposition for arbitrary algebraic groups: If 

 is given as a closed subgroup of , how do we single out the elements of 

? For classical groups they are defined as groups of matrices that preserve a

certain bilinear or sesquilinear form. Thus we would like to similarly realize an

arbitrary algebraic group  as stablizer of a certain action. It turns out this is

indeed possible (see here Theorem 14.1.1; the idea is that  stablizes the kernel 

). Using this we can reduced showing the existence of Jordan

decomposition of an arbitrary affine algebraic group to showing a closed

immersion  preserves semisimple and unipotent part, for details

see here.

Proof of Kolchin’s theorem: The idea is to reduced to the case of algebraically

closed fields, and use Wedderburn’s lemma:

If  and  is such that  is an irreducible -

representation, then  is generated as a -algebra by .

Using this lemma, we could show any irreducible representation  of a unipotent

group  is trivial. The idea is to write , where  is nilpotent, and

unipotence of  implies that  for any . Then by

Wedderburn’s lemma  for any , and hence  by the

nondegeneracy of the trace pairing.

Reference: https://virtualmath1.stanford.edu/~conrad/252Page/handouts/

alggroups.pdf
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