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Let  be the set of unipotent elements. This is a closed subset and hence

an algebraic (affine) variety. Note that  acts on  by conjugation, the orbits

of which are called unipotent orbits. We will see later that if  is reductive then

there are finitely many unipotent orbits. In the case of , it is due to Dynkin-

Kostant. In the case of , it is proved by Richardson (classical groups) and

Lusztig (exceptional groups). This is one of Lusztig’s motivation, that is to give

a uniform proof of finiteness of unipotent orbits using Deligne-Lusztig theory.

In the case of , nilpotent matrices are those with determinant and trace zero.

Thus  can be identified with , sending  to 

, which looks like a cone with singularity at origin. There are two

unipotent orbits: the identity and the conjugacy class of . In  over

the complex numbers, the number of conjugacy classes is the number of

partitions of  by Jordan normal form.

Every elements of torus is semisimple. One proof over  is use the criterion

that an element is semisimple iff its order is coprime to  and unipotent if its

order is a power of . A characterization of torus is that  is a torus iff  is

connected commutative algebraic group consisting of semi-simple elements. The

idea is that we can choose a closed embedding of  into the diagonal torus, and

it remains to show that closed connected subgroups of the diagonal torus is of

the form  for some .

Let  be a torus. The Weyl group  is finite (proof is highly

nontrivial).

Below are some facts from the theory of algebraic groups:

Irreducible iff connected iff geometrically irreducible iff geometrically

connected;
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geometrically reduced iff smooth (This is because of generic smoothness and

homogeneity); But reduced need not imply geometrically reduced over

nonperfect fields. The identity component is geometrically connected (since it

contains a rational point, see here, Lemma 33.7.14 for a proof.)

Let  be an algebraic group. There exists a maximal torus  (with respect

to inclusion).

The following is an important theorem: Any maximal torus in  are all

conjugate to each other. In the case of compact Lie groups, this follows from

Lefschetz fixed-point formula due to Hermann Weyl, in the case of algebraic

groups, this follows from Borel fixed-point formula.

Assume  is defined over . A maximal torus of  is a subgroup of the form 

 where  is a maximal torus stable under . For any , then 

 is again a maximal torus.

The natural question is to classify maximal torus in  up to -conjugacy. For

 the diagonal maximal torus  is -stable. Let  be a -stable torus, then

we can write , then we can check that  for 

to be -stable. Since , where  is antidiagonal matrix with all

ones. Thus  is isomorphic to  by sending 

to  (the condition that  is fixed by Frobenius means that 

). If  (or more generally ) then this is

just  but we get something new; but if , then 

. So we get two 

-conjugacy classes of , but we need to ensure that we can find 

such that . This is eassy, e.g. take , then 

.

From the above discussion we also see that it is important to consider the

function  and the level set  for  where  is

the Weyl group . This is precisely the Deligne-Lusztig variety .

Some preliminaries on reductive groups:

(Kolchin’s theorem) If  is a unipotent group, then there exists 

 such that  the standard unipotent group. Equivalently,

there exists a complete flag fixed by  and .

(Lie-Kolchin’s theorem) Let  be a connected solvable group. Then

there exists  such that  the upper triangular Borel

subgroup. Equivalently, there exists a complete flag fixed by . (connectedness

is crucial, e.g. )
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The first theorem is equivalent to the assertion that any representation of a

unipotent group has a fixed vector. Similarly, the second theorem is equivalent to

the assertion that any represention of a connected solvable group has a fixed

line.

Another remark is that although Kolchin’s theorem holds true for any field  but

Lie-Kolchin does not, e.g. the standard representation  has no fixed

lines.

Kolchin’s theorem also implies that unipotent groups are nilpotent as abstract

group. The following gives a structure theorem of connected solvable groups:

Let  be a connected solvable group, then  is a connected normal subgroup

of  and  where  is a maximal torus. Moreover, 

.

As a corollary, we have . It is actually remarkable that the quotient

has an algebro-geometric structure.

Now we get to the notion of reductive groups. Let  eb a connected algebraic

group. The radical  is the maximal connected, solvable, normal subgroup

of . The unipotent part  is called the unipotent radical.  is called

reductive if  and  is called semisimple if .

If , then  is reductive iff any representation of  is a direct sum of

irreducibles. All the classical groups ,  and  are reductive. The

proof in the case of  consists of showing  is equal to  where 

 acts on  via the standard representation. By Kolchin’s theorem we can

find . but since  is normal,  is acted on by  and so 

by transitivity of the action. For other classical groups use the same trick.

Reductive essentially means the group is an extension of torus by semisimple

groups (and also the finite component group if we consider discconected

reductive groups.)

Borel subgroups: Let  be a conneccted algebraic group. A subgroup  is Borel

if  is maximal among all connected solvable subgroups (no normality). 

 is Borel (Exercise). By Lie-Kolchin theorem, any Borel subgroup 

is of the form  for some . Also,  (Exercise). There

is a set bijection between  to the set of Borel subgroups of  by

sending  to . On the other hand, there is a geometric

interpretation of  as the set of complete flags in , and this turns out to

have the structure of a projective variety.

For example, consider . Note that 

is a Borel subgroup of , by writing it as . The former

is 



and the latter is 

. The latter can be written as product of four unipotent one-dimensional

subgroup 

In terms of flags, it looks like 

. This is an

example of isotropic flags. Thus  can be identified with the set

of isotropic flags.

To go from a Borel  of  to an isotropic flag, by Lie-Kolchin theorem there

is a line  fixed by . The orthogonal complement  is three-dimensional

and contains . But then  acts on , and there is a (non-degenerate)

symplectic form that is again preserved by . Using Lie-Kolchin theorem  has

another fixed line, call the pullback . The general form of isotropic flags are 

.

For a split torus, the character group  is defined to be  and

the cocharacter group  is . Both are free -modules. In the

nonsplit case we define  to be , which is equipped with a discrete

action of  (via action on both domain and codomain, see this answer

for an example. This turns out to be an equivaluence between category of -tori

and category of discrete -modules.

Sketch why an affine algebraic group admits a closed immersion into some 

: An action of an affine algebraic group on a vector space (possibly infinite-

dimensional) can be defined as a natural transformation , so it is

the same as a functorial action of  acting on  for each -algebra .

The idea is that  acts on the coordinate ring , but  is infinite-

dimensional. However, it turns out that the action is via a -algebra

automorphism, so we are done if we can show that the finite number of
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generators is contained in a finite-dimensional -stable subspace. This turns out

to reduced to the associativity axiom of a group action, for details see this

handout, section 12.2.

Key lemma in showing Jordan decomposition for arbitrary algebraic groups: If 

 is given as a closed subgroup of , how do we single out the elements of 

? For classical groups they are defined as groups of matrices that preserve a

certain bilinear or sesquilinear form. Thus we would like to similarly realize an

arbitrary algebraic group  as stablizer of a certain action. It turns out this is

indeed possible (see here Theorem 14.1.1; the idea is that  stablizes the kernel 

). Using this we can reduced showing the existence of Jordan

decomposition of an arbitrary affine algebraic group to showing a closed

immersion  preserves semisimple and unipotent part, for details

see here.

Proof of Kolchin’s theorem: The idea is to reduced to the case of algebraically

closed fields, and use Wedderburn’s lemma:

If  and  is such that  is an irreducible -

representation, then  is generated as a -algebra by .

Using this lemma, we could show any irreducible representation  of a unipotent

group  is trivial. The idea is to write , where  is nilpotent, and

unipotence of  implies that  for any . Then by

Wedderburn’s lemma  for any , and hence  by the

nondegeneracy of the trace pairing.

The importance of Borel subgroups is that they cover the group. More precisely,

the subgroups  for  cover . In particular, every element

of  lies in a Borel subgroup (  algebraically closed). From this we can also

derive that every semisimple element  lies in a torus. (There is real content

to this, since  might not lie in the identity component of the Zariski closure of 

, e.g.  may have finite order, as for all unipotent elements when 

.) For the proof see this handout (The idea is to use an algebro-

geometric version of covering lemma, similar to the case of compact Lie groups,

see this question as well, especially the proof using mapping degree).

We have the following important property of orbits of action by algebraic group:

 is an open in .
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This essentially follows from Chevalley’s theorem and the homogeneity of

orbits. A corollary is that if  is connected (so irreducible), then  is a

disjoint union of orbits of strictly lower dimension. In particular, orbits of

minimal dimension are closed.

A nice characterization of semisimple elements  is that they are

precisely the closed orbits in the adjoint action of  (i.e. conjugacy classes).

Another corollary is that the image of a homomorphism of algebraic groups is

closed, because all orbits are of the same dimension.

Borel fixed point theorem: Let  be a connected solvable group acting on a

projective variety , then  has a fixed point. The idea is to induct on .

Since  is also connected solvable and has lower dimension, it has a

fixed point . Let , which is closed (by separatedness) and

nonempty (since it contains ), so it is projective. We have an action of  on 

since  is normal subgroup of . Let  be a closed orbit, so 

 (see this question for orbit-stablizer theorem in algebraic

group), and this is both affine (  is normal subgroup fo  since it contains 

)

From this we deduce that 1.  is projective. 2. All Borel subgroups are

conjugate. For proof of 1, let  be a Borel subgroup of maximal dimension.

Choose a representation  and a line  such that  is the

stablizer of . Thus  acts on , and let  be a flag fixed by  by the

Lie-Kolchin’s theorem and by the choice of  we have . Then 

 embeds into  by the orbit stablizer theorem. It

remains to show that the orbit  is closed, but in fact it is a -orbit of

minimal dimension (since we choose  to have maximal dimensions among all

Borels). For proof of 2, we consider an arbitrary Borel  acting on 

(which is already projective) by left multiplication, then by the Borel fixed-point

theorem let  be a fixed point of . That means 

. By definition of Borel this means that 

.

Exercise: . This implies that 

.

As a corollary, we can show that all maximal torus  are conjugate (if  is

algebraically closed). For details see this handout and 24.1 of the reference.

The Cartan subgroups are connected component of centralizer of maximal torus 

. Facts: 1. All Cartan subgroups are conjugate to each other. 2. 

. 3.  is nilpotent. This implies  is connected and

solvable, so we can find a Borel  containing . Bruhat decomposition: The

natural map 
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is a bijection. Note that  is normal in , so  is a finite group, called

the Weyl group of . Corollary:  and also 

 by noting that .

The Bruhat order on Weyl group  is given by  if . The

closure  are called the Schubert varieties. The advantage of

using  is that it is independent of the choice of Borel (it is -orbit rather than 

-orbit).

Example: If  and  be a complete flag  and  a pair of

flags . If we look at the subspace , at some point its

dimension jumps from  to , denote it by . Repeat it with  and get 

. We get a permutation , and 

.

What is the closure relation: For , the dense open orbit is the one for which

the full flags are  and . There is a Bruhat order that one can read

off the closure relation.

For ,  acting on  which is  on the first 

entries in the diagonal and  on the last  entries. The  factors are

just swapping  with . If  and . If we

use the above recipe and get  and 

 where  is the permutation obtained by

taking  of  and . But since we have isotropic flags, we gave ,

implying .

Exercise: Try to work out the Bruhat order for  ( ).

For  reductive  and the quotient  identifies

the Bruhat decomposition (since  is contained in every Borel ) so lots of

combinatroics reduce to the reductive case.

A few remark:  is often called (open) Schubert variety rather than . This is

because we can define a twisted version  as follows: Let  be a

surjective group homomorphism (so it induces maps on  because it sends

Borel to Borel), we can consider the graph embedding  from  to 

. Then we define  to be the inverse image of . The two most important

examples are  (conjugation by ) which gives rise to Lusztig variety and 

 (if ) which gives rise to Deligne-Lusztig variety.



A character  is called a root if there is a unipotent subgroup 

(called a root subgroup) such that  for  and . It turns

out if  is reductive, then  and it is uniquely determined. See corollary

2.1 of the second reference. This relies on the classification of connected

reductive split rank 1 group, see the last theorem of the first reference.

Construction of coroot: Let  be a root and  the corresponding root subgroup.

Let  (a codimension-one subtorus of ) and . Note

that  contains  and , and . The quotient  is a

connected reductive split rank 1 group, so it is either  or . There is a

unique cocharacter  such that  is a reflection of 

 and maps the set of all roots  to itself; moreover, we have 

(i.e. .

Example: For , the character  is a root with

root subgroup  the standard unipotent subgroup. The coroot  is given by 

Root datum: See this handout for reference. The definition is given in Wikipedia.

Denote , we call  the associated root system to the root

datum. Note that  could be strictly smaller than .

Theorem (Chevalley): To a reductive group  the quadraple 

 is a reduced root datum. Moreover,  iff 

. Finally, let  be a reduced root datum, then there exists a

connected reductive group  such that .

Remark:  for connected reductive . The Weyl group 

 is isomorphic to .

If we fix a Borel  containing , then we can define 

the positive roots. Let  be the set of simple roots. Then the set of

reflections  for  already generates the Weyl group, and it turns out that

it is a Coxeter group.

Example: For , then . For , it is 

 (we have 

and 

, and 
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For , we have . Note that  is a codimension one

subspace of  (dimension ). For , if 

, then we have 

with the corresponding root subgroup given previously The root system is type 

.

Construction of finite Chevalley group: Recall if the base field is complex, the

Lie algebra of  decomposes as  where  is a Cartan subalgebra.

For any  such that , let  be the greatest integer such that 

. There exists a basis  satisfying

;

;

;

;

.

The upshot is that we can define  since  is

nilpotent. The integral property of Chevalley basis gurantees that 

 where all

coefficients  are in . Thus  is

a matrix with entries are polynomials in  with coefficients in . Therefore we

can define  to be the subgroup generated by  for  and 

.

Chevalley proved that if  then  is an adjoint group of type . If 

, then  is a finite simple group if . The group  is

defined over  since the Frobenius morphism takes  to itself

( ).

1. 

2. 

3. 

4. 

5. 
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There is an alternate characterization of length of an element , which is

the number of positive roots  such that  is a negative root. Its geometric

meaning is that it is the dimension of the open Schubert variety . More

precisely we have .

Example: For , we have  and . Moreover, 

 Finally . In this case all the closed Schubert varieties are

smooth. But for ,  and  are singular. If we fix a complete

flag  then . There is a map

from  to  whose image consists of .

Kazhdan-Lusztig noticed in 1983 that for , the Jordan-Holder series in

principal series of  have multiplicity 1. But for  this fails.

Fact: For , the closed Schubert variety  is smooth iff  avoid pattern like

 and .

Lang-Steinberg: If  is a connected algebraic group defined over , define the

Lang map  by , then  is surjective (connectedness is

crucial). This is also true for abelian varieties. Some famous examples are 

and this reduced to Artin-Schreier exact sequence. In the case of  it becomes

Kummer exact sequence.

Corollary: Let  be a variety acted by a connected group . Let  be a -

orbit. Assume  and the action is defined over , and  is stable under .

Then . (Proof is that if  then  for some  and use

Lang-Steinberg to write  then .) This is specific to finite

fields, e.g. if  then .

Reference:
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alggroups.pdf
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249B_2016.pdf
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