Local acyclicity and smooth base change
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Slogan: Smooth base change for torsion abelian etale sheaf is what flat base
change for quasi-cohrent sheaf.

Idea: Let X — D is a morphism of a proper complex analytic variety into the
disk. In practice, for ¢ small enough, f~((0,¢]) is usually a locally trivial
fibration (but maybe not over the entire closed interval [0, ], c.f. degeneration of
curves in smooth families). Then X; := f~(¢) — f~'((0,¢]) is a homotopy
equivalence. If 5 : f71((0,¢]) — f1([0,¢]) satisfies j,Z = Z and R%j,Z = (
for ¢ > 0, then using the Leray spectral sequence for j we can show
H*(f71([0,1)),Z) = H*(f~1((0,t]), Z) is an isomorphism. As a result, we can
define a cospecialization map

cosp* - H*(X,, ) & H*(f71((0,4)),2) & H*(1((0,1]),Z) — H*(Xo,Z).

To calculate R?j,Z at a point x € X (the only interesting place), we can take a
small ball B, centered at z of radius ¢; and for n» > 0 small enough, consider the
homology cycle E = X N B, N f~Y(nt). This is the vanishing cycle at x (think
of a loop around a smooth hyperboloid that degenerates into a double cone).
Then we have

(R, Z), < HYX N B.N f1((0,9t]),Z) = HY(E,Z).

Thus the cospecialization morphism is defined as long as H°(F,Z) = Z and
HY(E,Z) = 0 for ¢ > 0. We say that f is locally acyclic.

If S is a scheme and 5 — S is a geometric point. Let # — Spec(O%y) be a
geometric point, we say ¢ is the generisation of 5 and 5 is the specialization of ¢.

If f: X — S is amorphism of schemes and T — X is a geometric point of X,
then s = f() is a geometric point. Consider the base change

Fr 7 := Spec(O¥5) x Spec(OF) t, we call it the variety of vanishing cycles. We
call f is locally acyclic at 7 if for every ¢, the reduced cohomology of the
constant sheaf Z/n on F;; vanishes for every n invertible in x(Z),

i.e. Hy(Fg3,Z/n) = Z/n and HY,(Fy3,Z/n) = 0 for ¢ > 0, and f is locally

acyclic if it is locally acyclic at every 7.
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Lemma 1 (Stack project 0GJS): Local acyclicity is closed under quasi-finite base
change. More generally, it is closed under base change along S’ — S where
S" = lim S} is an inverse limit of quasi-finite S-schemes S} with affine

transition morphisms Sy — S,.

The idea (and the proof provided by Deligne) is that every vanishing cycle of f’
is a vanishing cycle of f.

Lemma 2 (SGA 4.5, V-3, Lemma 1.5, a bit terse; for the full detail, see section
2.9 of Aaron Landesman’s note instead) In the following Cartesian diagram, we
have €,Z/n = f*e.Z/n and the higher pushforward R%Z/n = 0 for ¢ > 0.

Again the proof given by Deligne is a bit terse, and you probably don’t
understand why he considers using the normalization. From my understanding
the importance stems from the fact that the etale local ring of a normal scheme is
a domain (by applying this and this).

Using Lemma 2, we can define a cospecialization map
cosp* : H* (X3, Z/n) — H*(X5,Z/n)
as follows: Consider the Cartesian diagram. Note that f” is locally acyclic by
Lemma 1 (note that we need the more general version). We can define cosp* by
H*(X;,Z/n) = H (X, e.Z/n) — H*(X5,Z/n).
The first arrow (isomorphism) is due to Lemma 2 (and Leray spectral sequence),

which tells us that R%/Z/n = 0 for ¢ > 0. The second one is because the
restriction of €/ Z/n to X, is Z/n (by local acyclicity and just put ¢ = 3.)

Remark: If S is the normalization of S in x(t), and X = X x¢ S then we have
H*(X3,Z/n) = H*(X,Z/n), which shows the utility of normalization. The
importance of normality is manifested in Zariski’s main theorem, see the
excellent explanation of its underlying geometric content here.

Theorem 3 Suppose S is a locally Noetherian scheme, s a geometric point of .S
and f : X — S a morphism. We suppose

1. The morphism f is locally acyclic.

2. For every geometric point ¢ of Spec(Og) and every ¢ > 0, the
cospecialization map HY(X3, Z/n) — H(Xz,7Z/n) is bijective.

Then the canonical homomorphism (R?f.Z/n)s — H9(X5,Z/n) is bijective for
every g > 0.
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The proof uses the following reduction: First the question is a local one so we
can suppose S = Og{g. Then it suffices to show that for every sheaf of Z /n-
modules F on S, the homomophism ¢9(F) : (Rif, f*F)s = HU( X5, f*F) is
bijective.

Every sheaf of Z/n-modules is filtered inductive limit of constructible sheaves
of Z/nZ-modules (stack project, OFON). Moreover, every constructible sheaf
embeds into a sheaf of the form [ ] ¢,,C) where iy : ty — S is a finite collection
of generisations of s (i.e. geometric point of Spec((’)g’fg)) and C, is a finite free
Z/n-module on ¢, (Stack project, 09Z6). Note that Lemma 2 and the condition
(b) implies that for F = i,,C), the homomorphism ¢?(F) is bijective (For

g = 0, we have

(Rof*f*]:)g = HO(X7 f*'L)\*CA) - HO(X7 ZI)\*C)\) = HO(Xga C)\) = HO(Xga f**F

and for ¢ > 0 both sides vanish. Note that condition (b) is crucial,

e.g. Spec(Al\ {0}) — Spec(A') is smooth hence locally acyclic but at 5 = 0
LHS is one-dimensional while RHS is zero-dimensional.) The following purely
homological algebra lemma finishes the job:

Lemma 4 If C is an abelian category in which filtered inductive limit exists,

©® : T* — T'* is a map of §-functors that vanishes in degrees from C to Ab
commuting with filtered colimits. Suppose there exists two subsets D and £ of
objects of C such that

a. every object of C is an filtered colimit of objects in D,

b. every object belonging to D is a subobject of an object belonging to £.
Then TFAE:

i. ¢?(A) is bijective for every ¢ > 0 and for every A € Ob(C).

ii. (M) is bijective for every ¢ > 0 and every M € €.
The proof is by induction on ¢ and a repeated use of five-lemma.
We deduce two corollaries from this theorem:

Corollary 5: If § = Spec((?fgflg), and f : X — S is alocally acyclic morphism.
Suppose for every geometric point ¢ of S the fiber X7 is acyclic
(i.e. HY(X7) = 0). Then we have f,Z/n = Z/n and Rf,Z/n = 0 for ¢ > 0.

Corollary 6: Composite of locally acyclic morphisms are locally acyclic. More
precisely, if f : X — Y and g : Y — Z are morphisms of locally noetherian
schemes. If f and g are locally acyclic, sois g o f.
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To see that corollary 6 follows from corollary 5, we can suppose X,Y and Z are
strictly local and f and ¢ are local morphisms. We need to show if Z is a
geometric point of Z, then we have H9(Xz,Z/n) = 0. Since g is locally
acyclic, we have H9(Yz,Z/n) = 0. In addition the morphism fz : Xz — Y are
locally acyclic and the geometric fibers are ayclic because f is locally acyclic.
Then by corollary 5, we have R?f;,7Z/n = 0 for ¢ > 0 and f;, are the constant
sheaf Z_/n on Y. We can now conclude using Leray’s spectral sequence.

Theorem 7 Smooth morphisms are locally acyclic.

Since the assertion is local for the etale topology on X and S, we can suppose
X = A¢. By passage to the limit, we can suppose S is Noetherian and
transitivity of local acyclicity allows us to further reduce to the case that d = 1.
Renaming S = Spec(A) and X = SpecA{T'}, where A{T'} is the henselization
of A[T] at T = 0, our task is to show the geometric fibers of X — S are
acyclic.

If ¢ is a geometric point of .S, the fiber X7 is projective limit of affine smooth
curves on ¢, and so HY(X3,Z/n) = 0 for ¢ > 2 by the theory of cohomology of
curves. Thus we only need to show H%(X37,Z/n) = Z/n and H* (X3, Z/n) = 0.

To show HY(X3,Z/n) = Z/n, it reduces to the following proposition in
commutative algebra:

Proposition 8 If A is a strictly local Henselian ring, S = Spec(A) and
X = SpecA{T}, then the geomtric fibers of X — S are connected.

By passage to the limit we can reduce to the case that A is a strictly
Henselization of a finitely generated Z-algebra. The importance of this reduction
is that A will then be an excellent ring. What do we gain? Note that it suffices to
show for every ¢ = Spec(k’) where £’ is a finite separable subextension of
k(t)/k(t), the fiber X is connected. For this we want to reduce to A normal,
becuse then A{T'} will be normal and every localization at a prime will then be
a normal domain, so its spectrum X, is integral, in particular connected. To
reduce to this case it essentially boils down to verifying A{T} @ 4 A" = A'{T}
is an isomorphism where A’ is the normalization of A in &/, and since A is
excellent, A" will be finite over A. The claim then follows by observing the ring
on the left is Henselian local and filtered colimit of etale local algebras on

A'[T] = A[T] =4 A’. (For details see Lemma 2.6.2 of Aaron Landesman’s
note).

To show H'(X3,Z/n) = 0, it suffices to prove the following which is a
restatement using the torsor interpretation of H'.
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Proposition 9 If A is a strictly local Henselian ring, S = Spec(A) and
X = SpecA{T}, and ¢ a geometric point of S. Then every Z/n-torsor over Xz
in the etale topology is trivial if n # 0 in the residue field of A.

The assumption that n # 0 in the residue field of A is necessary, c.f. the Artin-
Schreier cover Speck{T }[z]/(x? — x — T) — Spec(k{T'}) is a nontrivial
connected Z/p-torsor when k is a separably closed field of characteristic p.
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Pushforward along finite morphism is exact: https://stacks.math.columbia.edu/
tag/03QP

Relative normalization: https://stacks.math.columbia.edu/tag/OBAK

Sorry for very quickly glossing over the last part of smooth base change, which
is proving smooth maps are locally acyclic. Let me try to explain the ¢ = 1 case
better.

In the previous steps, we have reduced to the case that S = Spec(A) for A
strictly Henselian (and excellent, which is the case if A is the strict local ring of
a finitely generated Z-algebra) and X = Spec(A{T'}), where the notation
A{T} means we are taking the strict Henselization of A[T" . To show
H},(Fy3, Z/nZ) vanishes, it amounts to the following statement (for T lying

T

above 0 WLOG):

Let ¢ be a geometric point of S and X7 be the corresponding geometric
fiber. Then every connected étale torsor X; over X7 of order n coprime
to the residual characteristic of A is trivial.

1. The first reduction we can make is to reduce to the case that the image ¢ of
t in S is the generic point by replacing S by S” = Spec(A’) is the closure
oftin S.

2. We can replace A by the normalization of A in a finite separable
extension (t') of k(t) in k() (thus we can .S normal) because:

i. I can find x(¢') and étale torsor X’ over X’ := X x, t' such that
X; = X' xy t. The connnectedness of X' follows from the connectedness

of Xg.

ii. I can take the normalization B of A inside x(t') (which will be finite over
A if A is excellent) and B will also be a strict Henselian local ring. I also
replace X by X x g Spec(B) (which doesn’t change X’ and X").



In the following we rename t’ as ¢, so X', X’ become X; and X;.

3.

ii.

1ii.

By spreading-out we can find a dense open U C S such that X, extends to
an étale torsor Xy over Xp = X xg U.

. The first key point is that upon further base changing S to the

normalization in a finite separable extension (which is harmless by point
2), I can arrange S \ U has codimension at least 2 in S

. Let s be a codimension-1 point in S\ U, Let V' = Spec(Ogs ) (note that

Ogs is a DVR since S is normal). By abuse of notation we still call ¢ the
generic point of V. Our goal is to extend the étale torsor X, of X, across
Xy after some base change.

Applying Abhyankar’s lemma to V', we see after base changing from V' to
Vi := Spec(Og s [71/"]) where 7 is a uniformizer for Ogs s, we can extend

X, =X, x x, Xt, (where t; is the generic point of ;) across the generic
point of X, , where s; denotes the unique closed point of V.

By Zariski-Nagata in dimension 2 (which says that ramification is a
codimension-1 phenomenon) applied to the 2-dimensional regular local
ring Xy, , we see that the normalization of Xy, in X; is a finite étale cover
over Xy, (because the only codimension-1 point of Xy, for which
étaleness is not automatic is the generic point of X, for which we have
taken care of in 4(ii)).

. By invoking step 2 again (enlarging «(t) if necessary) we can assume Xy

is trivial above the subscheme (7T'=0)N Xy = U.

. To finish the proof that X is trivial, let R = I'(Xy, ©) and it suffices to

show R is finite étale over A{T"} (since A{T'} is strictly Henselian, we
must have R = A{T}). Note that we can check it by base changing
everything from X to X := Spec(A[[T]]), since X is faithfullly flat over
X. Thus our task now is to show R := R ® aqry A[[T]] is finite étale over
A[[T]]- If we let 1/ and 7 be the subscheme of )/(?J and )/Z; defined by
T™+1 = 0, then by hypothesis V} is trivial over Vp, i.e. Vj = Vi'. The key
point is that the same holds for f/m over V,,,, since étale sites are
insensitive to nilpotents. Let ¢ be the following composite as a map of
A{T}-algebra:

[(Xp. 0) = m D(V,, 0) = (lm [(V,,, 0))"

m

Since the complement of U has codimension > 2, we can apply Hartogs’s
theorem and get I'(V,,,, O) = A[T]/(T™*"1), so the target of ( can be identified
with A[[T]]™. The domain of ¢ is R by flat base change. Hence it suffices to

show ¢ is an isomorphism, which follows from checking it over U'.
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