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Slogan: Smooth base change for torsion abelian etale sheaf is what flat base

change for quasi-cohrent sheaf.

Idea: Let  is a morphism of a proper complex analytic variety into the

disk. In practice, for  small enough,  is usually a locally trivial

fibration (but maybe not over the entire closed interval , c.f. degeneration of

curves in smooth families). Then  is a homotopy

equivalence. If  satisfies  and 

for , then using the Leray spectral sequence for  we can show 

 is an isomorphism. As a result, we can

define a cospecialization map 

To calculate  at a point  (the only interesting place), we can take a

small ball  centered at  of radius ; and for  small enough, consider the

homology cycle . This is the vanishing cycle at  (think

of a loop around a smooth hyperboloid that degenerates into a double cone).

Then we have 

Thus the cospecialization morphism is defined as long as  and 

 for . We say that  is locally acyclic.

If  is a scheme and  is a geometric point. Let  be a

geometric point, we say  is the generisation of  and  is the specialization of .

If  is a morphism of schemes and  is a geometric point of ,

then  is a geometric point. Consider the base change 

, we call it the variety of vanishing cycles. We

call  is locally acyclic at  if for every , the reduced cohomology of the

constant sheaf  on  vanishes for every  invertible in ,

i.e.  and  for , and  is locally

acyclic if it is locally acyclic at every .

https://functor.network/user/3126/entry/1381
https://functor.network/user/3126/entry/1381
https://functor.network/user/3126/entry/1381
https://functor.network/user/3126
https://en.wikipedia.org/wiki/Vanishing_cycle


Lemma 1 (Stack project 0GJS): Local acyclicity is closed under quasi-finite base

change. More generally, it is closed under base change along  where 

 is an inverse limit of quasi-finite -schemes  with affine

transition morphisms .

The idea (and the proof provided by Deligne) is that every vanishing cycle of 

is a vanishing cycle of .

Lemma 2 (SGA 4.5, V-3, Lemma 1.5, a bit terse; for the full detail, see section

2.9 of Aaron Landesman’s note instead) In the following Cartesian diagram, we

have  and the higher pushforward  for .

Again the proof given by Deligne is a bit terse, and you probably don’t

understand why he considers using the normalization. From my understanding

the importance stems from the fact that the etale local ring of a normal scheme is

a domain (by applying this and this).

Using Lemma 2, we can define a cospecialization map 

as follows: Consider the Cartesian diagram. Note that  is locally acyclic by

Lemma 1 (note that we need the more general version). We can define  by 

The first arrow (isomorphism) is due to Lemma 2 (and Leray spectral sequence),

which tells us that  for . The second one is because the

restriction of  to  is  (by local acyclicity and just put .)

Remark: If  is the normalization of  in , and  then we have 

, which shows the utility of normalization. The

importance of normality is manifested in Zariski’s main theorem, see the

excellent explanation of its underlying geometric content here.

Theorem 3 Suppose  is a locally Noetherian scheme,  a geometric point of 

and  a morphism. We suppose

The morphism  is locally acyclic.

For every geometric point  of  and every , the

cospecialization map  is bijective.

Then the canonical homomorphism  is bijective for

every .

1. 

2. 
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The proof uses the following reduction: First the question is a local one so we

can suppose . Then it suffices to show that for every sheaf of -

modules  on , the homomophism  is

bijective.

Every sheaf of -modules is filtered inductive limit of constructible sheaves

of -modules (stack project, 0F0N). Moreover, every constructible sheaf

embeds into a sheaf of the form  where  is a finite collection

of generisations of  (i.e. geometric point of ) and  is a finite free 

-module on (Stack project, 09Z6). Note that Lemma 2 and the condition

(b) implies that for , the homomorphism  is bijective (For 

, we have 

and for  both sides vanish. Note that condition (b) is crucial,

e.g.  is smooth hence locally acyclic but at 

LHS is one-dimensional while RHS is zero-dimensional.) The following purely

homological algebra lemma finishes the job:

Lemma 4 If  is an abelian category in which filtered inductive limit exists, 

 is a map of -functors that vanishes in degrees from  to 

commuting with filtered colimits. Suppose there exists two subsets  and  of

objects of  such that

every object of  is an filtered colimit of objects in ,

every object belonging to  is a subobject of an object belonging to .

Then TFAE:

 is bijective for every  and for every .

 is bijective for every  and every .

The proof is by induction on  and a repeated use of five-lemma.

We deduce two corollaries from this theorem:

Corollary 5: If , and  is a locally acyclic morphism.

Suppose for every geometric point  of  the fiber  is acyclic

(i.e. ). Then we have  and  for .

Corollary 6: Composite of locally acyclic morphisms are locally acyclic. More

precisely, if  and  are morphisms of locally noetherian

schemes. If  and  are locally acyclic, so is .

a. 

b. 

i. 

ii. 

https://stacks.math.columbia.edu/tag/0F0N
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To see that corollary 6 follows from corollary 5, we can suppose  and  are

strictly local and  and  are local morphisms. We need to show if  is a

geometric point of , then we have . Since  is locally

acyclic, we have . In addition the morphism  are

locally acyclic and the geometric fibers are ayclic because  is locally acyclic.

Then by corollary 5, we have  for  and  are the constant

sheaf  on . We can now conclude using Leray’s spectral sequence.

Theorem 7 Smooth morphisms are locally acyclic.

Since the assertion is local for the etale topology on  and , we can suppose 

. By passage to the limit, we can suppose  is Noetherian and

transitivity of local acyclicity allows us to further reduce to the case that .

Renaming  and , where  is the henselization

of  at , our task is to show the geometric fibers of  are

acyclic.

If  is a geometric point of , the fiber  is projective limit of affine smooth

curves on , and so  for  by the theory of cohomology of

curves. Thus we only need to show  and .

To show , it reduces to the following proposition in

commutative algebra:

Proposition 8 If  is a strictly local Henselian ring,  and 

, then the geomtric fibers of  are connected.

By passage to the limit we can reduce to the case that  is a strictly

Henselization of a finitely generated -algebra. The importance of this reduction

is that  will then be an excellent ring. What do we gain? Note that it suffices to

show for every  where  is a finite separable subextension of 

, the fiber  is connected. For this we want to reduce to  normal,

becuse then  will be normal and every localization at a prime will then be

a normal domain, so its spectrum  is integral, in particular connected. To

reduce to this case it essentially boils down to verifying 

is an isomorphism where  is the normalization of  in , and since  is

excellent,  will be finite over . The claim then follows by observing the ring

on the left is Henselian local and filtered colimit of etale local algebras on 

. (For details see Lemma 2.6.2 of Aaron Landesman’s

note).

To show , it suffices to prove the following which is a

restatement using the torsor interpretation of .

https://en.wikipedia.org/wiki/Excellent_ring


Proposition 9 If  is a strictly local Henselian ring,  and 

, and  a geometric point of . Then every -torsor over 

in the etale topology is trivial if  in the residue field of .

The assumption that  in the residue field of  is necessary, c.f. the Artin-

Schreier cover  is a nontrivial

connected -torsor when  is a separably closed field of characteristic .

http://math.stanford.edu/~conrad/papers/nagatafinal.pdf

Pushforward along finite morphism is exact: https://stacks.math.columbia.edu/

tag/03QP

Relative normalization: https://stacks.math.columbia.edu/tag/0BAK

Sorry for very quickly glossing over the last part of smooth base change, which

is proving smooth maps are locally acyclic. Let me try to explain the  case

better.

In the previous steps, we have reduced to the case that  for 

strictly Henselian (and excellent, which is the case if  is the strict local ring of

a finitely generated -algebra) and , where the notation 

 means we are taking the strict Henselization of . To show 

 vanishes, it amounts to the following statement (for  lying

above  WLOG):

Let  be a geometric point of  and  be the corresponding geometric

fiber. Then every connected étale torsor  over  of order  coprime

to the residual characteristic of  is trivial.

The first reduction we can make is to reduce to the case that the image  of

 in  is the generic point by replacing  by  is the closure

of  in .

We can replace  by the normalization of  in a finite separable

extension  of  in  (thus we can  normal) because:

I can find  and étale torsor  over  such that 

. The connnectedness of  follows from the connectedness

of .

I can take the normalization  of  inside  (which will be finite over

 if  is excellent) and  will also be a strict Henselian local ring. I also

replace  by  (which doesn’t change  and ).

1. 

2. 

i. 

ii. 



In the following we rename  as , so ,  become  and .

By spreading-out we can find a dense open  such that  extends to

an étale torsor  over .

The first key point is that upon further base changing  to the

normalization in a finite separable extension (which is harmless by point

2), I can arrange  has codimension at least 2 in :

Let  be a codimension-1 point in , Let  (note that 

 is a DVR since  is normal). By abuse of notation we still call  the

generic point of . Our goal is to extend the étale torsor  of  across 

 after some base change.

Applying Abhyankar’s lemma to , we see after base changing from  to

 where  is a uniformizer for , we can extend 

 (where  is the generic point of ) across the generic

point of , where  denotes the unique closed point of .

By Zariski-Nagata in dimension 2 (which says that ramification is a

codimension-1 phenomenon) applied to the 2-dimensional regular local

ring , we see that the normalization of  in  is a finite étale cover

over  (because the only codimension-1 point of  for which

étaleness is not automatic is the generic point of  for which we have

taken care of in 4(ii)).

By invoking step 2 again (enlarging  if necessary) we can assume 

is trivial above the subscheme .

To finish the proof that  is trivial, let  and it suffices to

show  is finite étale over  (since  is strictly Henselian, we

must have ). Note that we can check it by base changing

everything from  to , since  is faithfullly flat over 

. Thus our task now is to show  is finite étale over 

. If we let  and  be the subscheme of  and  defined by 

, then by hypothesis  is trivial over , i.e. . The key

point is that the same holds for  over , since étale sites are

insensitive to nilpotents. Let  be the following composite as a map of 

-algebra: 

Since the complement of  has codimension , we can apply Hartogs’s

theorem and get , so the target of  can be identified

with . The domain of  is  by flat base change. Hence it suffices to

show  is an isomorphism, which follows from checking it over .

3. 

4. 

i. 

ii. 

iii. 
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