Local acyclicity and smooth base change

J'ignore • 22 Sep 2025

Slogan: Smooth base change for torsion abelian etale sheaf is what flat base change for quasi-cohrent sheaf.

Idea: Let $X \to D$ is a morphism of a proper complex analytic variety into the disk. In practice, for t small enough, $f^{-1}((0,t])$ is usually a locally trivial fibration (but maybe not over the entire closed interval [0,t], c.f. degeneration of curves in smooth families). Then $X_t := f^{-1}(t) \to f^{-1}((0,t])$ is a homotopy equivalence. If $j: f^{-1}((0,t]) \to f^{-1}([0,t])$ satisfies $j_*\mathbb{Z} = \mathbb{Z}$ and $R^q j_*\mathbb{Z} = 0$ for q>0, then using the Leray spectral sequence for j we can show $H^*(f^{-1}([0,t]),\mathbb{Z}) \xrightarrow{\cong} H^*(f^{-1}((0,t]),\mathbb{Z})$ is an isomorphism. As a result, we can define a cospecialization map

$$cosp^*: H^*(X_t, \mathbb{Z}) \stackrel{\cong}{\leftarrow} H^*(f^{-1}((0,t]), \mathbb{Z}) \stackrel{\cong}{\leftarrow} H^*(f^{-1}([0,t]), \mathbb{Z}) \to H^*(X_0, \mathbb{Z}).$$

To calculate $R^q j_* \mathbb{Z}$ at a point $x \in X_0$ (the only interesting place), we can take a small ball B_ϵ centered at x of radius ϵ ; and for $\eta > 0$ small enough, consider the homology cycle $E = X \cap B_\epsilon \cap f^{-1}(\eta t)$. This is the vanishing cycle at x (think of a loop around a smooth hyperboloid that degenerates into a double cone). Then we have

$$(R^q j_* \mathbb{Z})_x \stackrel{\cong}{\leftarrow} H^q(X \cap B_\epsilon \cap f^{-1}((0, \eta t]), \mathbb{Z}) \stackrel{\cong}{\rightarrow} H^q(E, \mathbb{Z}).$$

Thus the cospecialization morphism is defined as long as $H^0(E, \mathbb{Z}) = \mathbb{Z}$ and $H^q(E, \mathbb{Z}) = 0$ for q > 0. We say that f is locally acyclic.

If S is a scheme and $\overline{s} \to S$ is a geometric point. Let $\overline{t} \to Spec(\mathcal{O}^{sh}_{S,\overline{s}})$ be a geometric point, we say \overline{t} is the generisation of \overline{s} and \overline{s} is the specialization of \overline{t} .

If $f:X\to S$ is a morphism of schemes and $\overline{x}\to X$ is a geometric point of X, then $\overline{s}=f(\overline{x})$ is a geometric point. Consider the base change $F_{\overline{x},\overline{t}}:=Spec(\mathcal{O}^{sh}_{X,\overline{x}})\times_{Spec(\mathcal{O}^{sh}_{S,\overline{s}})}\overline{t}$, we call it the variety of vanishing cycles. We call f is locally acyclic at \overline{x} if for every \overline{t} , the reduced cohomology of the constant sheaf \mathbb{Z}/n on $F_{\overline{x},\overline{t}}$ vanishes for every n invertible in $\kappa(\overline{x})$, i.e. $H^0_{et}(F_{\overline{x},\overline{t}},\mathbb{Z}/n)=\mathbb{Z}/n$ and $H^q_{et}(F_{\overline{x},\overline{t}},\mathbb{Z}/n)=0$ for q>0, and f is locally acyclic if it is locally acyclic at every \overline{x} .

Lemma 1 (Stack project 0GJS): Local acyclicity is closed under quasi-finite base change. More generally, it is closed under base change along $S' \to S$ where $S' = \varprojlim S'_{\lambda}$ is an inverse limit of quasi-finite S-schemes S'_{λ} with affine transition morphisms $S_{\lambda} \to S_{\mu}$.

The idea (and the proof provided by Deligne) is that every vanishing cycle of f' is a vanishing cycle of f.

Lemma 2 (SGA 4.5, V-3, Lemma 1.5, a bit terse; for the full detail, see section 2.9 of Aaron Landesman's note instead) In the following Cartesian diagram, we have $\epsilon'_*\mathbb{Z}/n = f^*\epsilon_*\mathbb{Z}/n$ and the higher pushforward $R^q\epsilon'_*\mathbb{Z}/n = 0$ for q > 0.

Again the proof given by Deligne is a bit terse, and you probably don't understand why he considers using the normalization. From my understanding the importance stems from the fact that the etale local ring of a normal scheme is a domain (by applying this and this).

Using Lemma 2, we can define a cospecialization map

$$cosp^*: H^*(X_{\overline{t}}, \mathbb{Z}/n) \to H^*(X_{\overline{s}}, \mathbb{Z}/n)$$

as follows: Consider the Cartesian diagram. Note that f' is locally acyclic by Lemma 1 (note that we need the more general version). We can define $cosp^*$ by

$$H^*(X_{\overline{t}}, \mathbb{Z}/n) \cong H^*(X, \epsilon'_*\mathbb{Z}/n) \to H^*(X_{\overline{s}}, \mathbb{Z}/n).$$

The first arrow (isomorphism) is due to Lemma 2 (and Leray spectral sequence), which tells us that $R^q \epsilon_*' \mathbb{Z}/n = 0$ for q > 0. The second one is because the restriction of $\epsilon_*' \mathbb{Z}/n$ to X_s is \mathbb{Z}/n (by local acyclicity and just put $\overline{t} = \overline{s}$.)

Remark: If \overline{S} is the normalization of S in $\kappa(t)$, and $\overline{X} = X \times_S \overline{S}$ then we have $H^*(X_{\overline{t}}, \mathbb{Z}/n) \cong H^*(\overline{X}, \mathbb{Z}/n)$, which shows the utility of normalization. The importance of normality is manifested in Zariski's main theorem, see the excellent explanation of its underlying geometric content here.

Theorem 3 Suppose S is a locally Noetherian scheme, \overline{s} a geometric point of S and $f: X \to S$ a morphism. We suppose

- 1. The morphism f is locally acyclic.
- 2. For every geometric point \overline{t} of $Spec(\mathcal{O}^{sh}_{S,\overline{s}})$ and every $q \geq 0$, the cospecialization map $H^q(X_{\overline{t}},\mathbb{Z}/n) \to H^q(X_{\overline{s}},\mathbb{Z}/n)$ is bijective.

Then the canonical homomorphism $(R^q f_* \mathbb{Z}/n)_{\overline{s}} \to H^q(X_{\overline{s}}, \mathbb{Z}/n)$ is bijective for every $q \geq 0$.

The proof uses the following reduction: First the question is a local one so we can suppose $S=\mathcal{O}^{sh}_{S,\overline{s}}$. Then it suffices to show that for every sheaf of \mathbb{Z}/n -modules \mathcal{F} on S, the homomorphism $\varphi^q(\mathcal{F}): (R^qf_*f^*\mathcal{F})_{\overline{s}} \to H^q(X_{\overline{s}}, f^*\mathcal{F})$ is bijective.

Every sheaf of \mathbb{Z}/n -modules is filtered inductive limit of constructible sheaves of $\mathbb{Z}/n\mathbb{Z}$ -modules (stack project, 0F0N). Moreover, every constructible sheaf embeds into a sheaf of the form $\prod i_{\lambda_*}C_{\lambda}$ where $i_{\lambda}:t_{\lambda}\to S$ is a finite collection of generisations of s (i.e. geometric point of $Spec(\mathcal{O}^{sh}_{S,\overline{s}})$) and C_{λ} is a finite free \mathbb{Z}/n -module on t_{λ} (Stack project, 09Z6). Note that Lemma 2 and the condition (b) implies that for $\mathcal{F}=i_{\lambda_*}C_{\lambda}$, the homomorphism $\varphi^q(\mathcal{F})$ is bijective (For q=0, we have

$$(R^0 f_* f^* \mathcal{F})_{\overline{s}} = H^0(X, f^* i_{\lambda_*} C_{\lambda}) = H^0(X, i'_{\lambda_*} C_{\lambda}) = H^0(X_{\overline{s}}, C_{\lambda}) = H^0(X_{\overline{s}}, f^* \mathcal{F})$$

and for q>0 both sides vanish. Note that condition (b) is crucial, e.g. $Spec(\mathbb{A}^1\setminus\{0\})\to Spec(\mathbb{A}^1)$ is smooth hence locally acyclic but at $\overline{s}=0$ LHS is one-dimensional while RHS is zero-dimensional.) The following purely homological algebra lemma finishes the job:

Lemma 4 If $\mathcal C$ is an abelian category in which filtered inductive limit exists, $\varphi^{\bullet}: T^{\bullet} \to T'^{\bullet}$ is a map of δ -functors that vanishes in degrees from $\mathcal C$ to Ab commuting with filtered colimits. Suppose there exists two subsets $\mathcal D$ and $\mathcal E$ of objects of $\mathcal C$ such that

- a. every object of C is an filtered colimit of objects in D,
- b. every object belonging to \mathcal{D} is a subobject of an object belonging to \mathcal{E} .

Then TFAE:

- i. $\varphi^q(A)$ is bijective for every $q \geq 0$ and for every $A \in Ob(\mathcal{C})$.
- ii. $\varphi^q(M)$ is bijective for every $q \geq 0$ and every $M \in \mathcal{E}$.

The proof is by induction on q and a repeated use of five-lemma.

We deduce two corollaries from this theorem:

Corollary 5: If $S = Spec(\mathcal{O}_{S,\overline{s}}^{sh})$, and $f: X \to S$ is a locally acyclic morphism. Suppose for every geometric point \overline{t} of S the fiber $X_{\overline{t}}$ is acyclic (i.e. $\tilde{H}^q(X_{\overline{t}}) = 0$). Then we have $f_*\mathbb{Z}/n = \mathbb{Z}/n$ and $R^qf_q\mathbb{Z}/n = 0$ for q > 0.

Corollary 6: Composite of locally acyclic morphisms are locally acyclic. More precisely, if $f: X \to Y$ and $g: Y \to Z$ are morphisms of locally noetherian schemes. If f and g are locally acyclic, so is $g \circ f$.

To see that corollary 6 follows from corollary 5, we can suppose X,Y and Z are strictly local and f and g are local morphisms. We need to show if \overline{z} is a geometric point of Z, then we have $\tilde{H}^q(X_{\overline{z}},\mathbb{Z}/n)=0$. Since g is locally acyclic, we have $\tilde{H}^q(Y_{\overline{z}},\mathbb{Z}/n)=0$. In addition the morphism $f_{\overline{z}}:X_{\overline{z}}\to Y_{\overline{z}}$ are locally acyclic and the geometric fibers are ayclic because f is locally acyclic. Then by corollary 5, we have $R^qf_{\overline{z}*}\mathbb{Z}/n=0$ for q>0 and $f_{\overline{z}*}$ are the constant sheaf \mathbb{Z}/n on $Y_{\overline{z}}$. We can now conclude using Leray's spectral sequence.

Theorem 7 Smooth morphisms are locally acyclic.

Since the assertion is local for the etale topology on X and S, we can suppose $X=\mathbb{A}^d_S$. By passage to the limit, we can suppose S is Noetherian and transitivity of local acyclicity allows us to further reduce to the case that d=1. Renaming S=Spec(A) and $X=SpecA\{T\}$, where $A\{T\}$ is the henselization of A[T] at T=0, our task is to show the geometric fibers of $X\to S$ are acyclic.

If \overline{t} is a geometric point of S, the fiber $X_{\overline{t}}$ is projective limit of affine smooth curves on \overline{t} , and so $H^q(X_{\overline{t}}, \mathbb{Z}/n) = 0$ for $q \geq 2$ by the theory of cohomology of curves. Thus we only need to show $H^0(X_{\overline{t}}, \mathbb{Z}/n) = \mathbb{Z}/n$ and $H^1(X_{\overline{t}}, \mathbb{Z}/n) = 0$.

To show $H^0(X_{\overline{t}}, \mathbb{Z}/n) = \mathbb{Z}/n$, it reduces to the following proposition in commutative algebra:

Proposition 8 If A is a strictly local Henselian ring, S = Spec(A) and X = Spec(A), then the geometric fibers of $X \to S$ are connected.

By passage to the limit we can reduce to the case that A is a strictly Henselization of a finitely generated \mathbb{Z} -algebra. The importance of this reduction is that A will then be an excellent ring. What do we gain? Note that it suffices to show for every t' = Spec(k') where k' is a finite separable subextension of $\kappa(\overline{t})/\kappa(t)$, the fiber $X_{t'}$ is connected. For this we want to reduce to A normal, becuse then $A\{T\}$ will be normal and every localization at a prime will then be a normal domain, so its spectrum $X_{t'}$ is integral, in particular connected. To reduce to this case it essentially boils down to verifying $A\{T\} \otimes_A A' \xrightarrow{\cong} A'\{T\}$ is an isomorphism where A' is the normalization of A in k', and since A is excellent, A' will be finite over A. The claim then follows by observing the ring on the left is Henselian local and filtered colimit of etale local algebras on $A'[T] \cong A[T] \cong_A A'$. (For details see Lemma 2.6.2 of Aaron Landesman's note).

To show $H^1(X_{\overline{t}}, \mathbb{Z}/n) = 0$, it suffices to prove the following which is a restatement using the torsor interpretation of H^1 .

Proposition 9 If A is a strictly local Henselian ring, S = Spec(A) and X = Spec(A), and \overline{t} a geometric point of S. Then every \mathbb{Z}/n -torsor over $X_{\overline{t}}$ in the etale topology is trivial if $n \neq 0$ in the residue field of A.

The assumption that $n \neq 0$ in the residue field of A is necessary, c.f. the Artin-Schreier cover $Speck\{T\}[x]/(x^p-x-T) \to Spec(k\{T\})$ is a nontrivial connected \mathbb{Z}/p -torsor when k is a separably closed field of characteristic p.

http://math.stanford.edu/~conrad/papers/nagatafinal.pdf

Pushforward along finite morphism is exact: https://stacks.math.columbia.edu/tag/03QP

Relative normalization: https://stacks.math.columbia.edu/tag/0BAK

Sorry for very quickly glossing over the last part of smooth base change, which is proving smooth maps are locally acyclic. Let me try to explain the q=1 case better.

In the previous steps, we have reduced to the case that $S = \operatorname{Spec}(A)$ for A strictly Henselian (and excellent, which is the case if A is the strict local ring of a finitely generated \mathbb{Z} -algebra) and $X = \operatorname{Spec}(A\{T\})$, where the notation $A\{T\}$ means we are taking the strict Henselization of $A[T]_{(0)}$. To show $H^1_{\operatorname{\acute{e}t}}(F_{\overline{x},\overline{t}},\mathbb{Z}/n\mathbb{Z})$ vanishes, it amounts to the following statement (for \overline{x} lying above 0 WLOG):

Let \overline{t} be a geometric point of S and $X_{\overline{t}}$ be the corresponding geometric fiber. Then every connected étale torsor $\tilde{X}_{\overline{t}}$ over $X_{\overline{t}}$ of order n coprime to the residual characteristic of A is trivial.

- 1. The first reduction we can make is to reduce to the case that the image t of \overline{t} in S is the generic point by replacing S by $S' = \operatorname{Spec}(A')$ is the closure of t in S.
- 2. We can replace A by the normalization of A in a finite separable extension $\kappa(t')$ of $\kappa(t)$ in $\kappa(\overline{t})$ (thus we can S normal) because:
- i. I can find $\kappa(t')$ and étale torsor \tilde{X}' over $X' := X \times_t t'$ such that $\tilde{X}_{\overline{t}} = \tilde{X}' \times_{t'} \overline{t}$. The connnectedness of \tilde{X}' follows from the connectedness of $\tilde{X}_{\overline{t}}$.
- ii. I can take the normalization B of A inside $\kappa(t')$ (which will be finite over A if A is excellent) and B will also be a strict Henselian local ring. I also replace X by $X \times_S \operatorname{Spec}(B)$ (which doesn't change X' and \tilde{X}').

In the following we rename t' as t, so X', \tilde{X}' become X_t and \tilde{X}_t .

- 3. By spreading-out we can find a dense open $U \subset S$ such that \tilde{X}_t extends to an étale torsor \tilde{X}_U over $X_U = X \times_S U$.
- 4. The first key point is that upon further base changing S to the normalization in a finite separable extension (which is harmless by point 2), I can arrange $S \setminus U$ has codimension at least 2 in S:
- i. Let s be a codimension-1 point in $S \setminus U$, Let $V = \operatorname{Spec}(\mathcal{O}_{S,s})$ (note that $\mathcal{O}_{S,s}$ is a DVR since S is normal). By abuse of notation we still call t the generic point of V. Our goal is to extend the étale torsor \tilde{X}_t of X_t across X_V after some base change.
- ii. Applying Abhyankar's lemma to V, we see after base changing from V to $V_1 := \operatorname{Spec}(\mathcal{O}_{S,s}[\pi^{1/n}])$ where π is a uniformizer for $\mathcal{O}_{S,s}$, we can extend $\tilde{X}_1 := \tilde{X}_t \times_{X_t} X_{t_1}$ (where t_1 is the generic point of V_1) across the generic point of X_{s_1} , where s_1 denotes the unique closed point of V_1 .
- iii. By Zariski-Nagata in dimension 2 (which says that ramification is a codimension-1 phenomenon) applied to the 2-dimensional regular local ring X_{V_1} , we see that the normalization of X_{V_1} in \tilde{X}_1 is a finite étale cover over X_{V_1} (because the only codimension-1 point of X_{V_1} for which étaleness is not automatic is the generic point of X_{s_1} for which we have taken care of in 4(ii)).
- 5. By invoking step 2 again (enlarging $\kappa(t)$ if necessary) we can assume \tilde{X}_U is trivial above the subscheme $(T=0)\cap X_U=U$.
- 6. To finish the proof that \tilde{X}_U is trivial, let $R = \Gamma(\tilde{X}_U, \mathcal{O})$ and it suffices to show R is finite étale over $A\{T\}$ (since $A\{T\}$ is strictly Henselian, we must have $R = A\{T\}$). Note that we can check it by base changing everything from X to $\hat{X} := \operatorname{Spec}(A[[T]])$, since \hat{X} is faithfullly flat over X. Thus our task now is to show $\hat{R} := R \otimes_{A\{T\}} A[[T]]$ is finite étale over A[[T]]. If we let V_m and \tilde{V}_m be the subscheme of \widehat{X}_U and \widehat{X}_U defined by $T^{m+1} = 0$, then by hypothesis \tilde{V}_0 is trivial over V_0 , i.e. $\tilde{V}_0 \cong V_0^n$. The key point is that the same holds for \tilde{V}_m over V_m , since étale sites are insensitive to nilpotents. Let φ be the following composite as a map of $A\{T\}$ -algebra:

$$\Gamma(\widehat{\tilde{X}_U}, \mathcal{O}) \to \varprojlim_m \Gamma(\tilde{V}_m, \mathcal{O}) \cong (\varprojlim_m \Gamma(V_m, \mathcal{O}))^n$$

Since the complement of U has codimension ≥ 2 , we can apply Hartogs's theorem and get $\Gamma(V_m, \mathcal{O}) = A[T]/(T^{m+1})$, so the target of φ can be identified with $A[[T]]^n$. The domain of φ is \widehat{R} by flat base change. Hence it suffices to show φ is an isomorphism, which follows from checking it over U.