Obstruction theory

J'ignore • 3 Sep 2025

We would like to understand homotopy classes of maps between spaces. Recall an important construction, the mapping cylinder of $i:A\to X:=X \bigsqcup (A\times I)/i(a)\sim (a,0)$. Equivalently, it is pushout of $A\to A\times I$ (sending a to (a,0), inclusion) and $i:A\to X$; Note that A is a deformation retract of $A\times I$, and M(i). Have a closed inclusion $A\to A\times I$ sending $a\mapsto (a,1)$, and there exists an open neighborhood U of A such that U deformation retracts onto A. Finally, we can factor an arbitrary map i into closed inclusion into M(i) followed by homotopy equivalence.

Now $Map(M(f),Y)\cong Map(X,Y)\times_{Map(A,Y)}Map(A\times I,Y)$. If we ask that the other copy of A (i.e. $A\times 1$) sent to a point y, the data amounts to a map $g:X\to Y$ and a homotopy from $g\circ f\cong c_y$ (null-homotopy), this amounts to a continuous map from the mapping cone C(f) into Y.

Given a map $g: X \to Y$, we can extend it to C(f) iff $g \circ f$ is nullhomotopic; $Map(C(f),Y) \to Map(X,Y)$ has fiber; A CW complex X is a sequence of spaces $X^{[i]}$ (inductive limit) where $X^{[0]}$ is a discrete set of points; $X^{[i]}$ is obtained from $X^{[i-1]}$ by forming pushout with $\bigsqcup D^i$ with attaching maps $\theta_i: ||S^{i-1} \to X^{[i-1]}|$.

Understanding in terms of mapping cones: $Map(X^{[i]}, Y)$ is a map $g_i: X^{[i-1]} \to Y$ and for each copy of S^{i-1} and homotopy $g \circ \theta_i|_{S_n^{i-1}} \cong c_{y_i}$ (the image of the origin in D^i .)

Conclusion: Map(X,Y) is inverse limit of $Map(X^{[i]},Y)$. For i=0, $Map(X^{[0]},Y)=\prod_{X^{[0]}}Y$.

Note that $f \circ \theta_i|_{S_n^{i-1}}: S^{i-1} \to Y$ is an element of $\pi_{i-1}(Y)$. We get a function $I_i \to \pi_{i-1}(Y)$, extending to a homomorphism from the free abelian group $\mathbb{Z} \cdot I_i$ (cellular cochain). The map is extensible iff this cochain is zero, which is not a homological condition. However it is easy to prove two things:

- 1. This cochain is a cocycle.
- 2. If f is homotopic to f', then their corresponding cochains (cocycles by (1)) differ by a coboundary.

Thus if the cohomology class vanishes, we can choose f' homotopic to f such that f' can be extended. We might worry about that there is a tree of possibilities if we increase i. The miraculous thing about obstruction theory is that this is not the case.