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Before Deligne-Lusztig theory, we know very little about representations of

finite groups of Lie type. The case of  is worked out in a paper by J. A.

Green in 1955. Then the case of  is done by Bhama Srinivasan, which

provides the first example of unipotent cuspidal representations. Then in 1974,

B. Chang and R. Ree figured out the case of . That’s virtually all of what

we knew prior to the ground-breaking paper by Deligne-Lusztig in 1976 using

geometric methods to study representations of general reductive groups. The

contemporary thread is that representation <- geometry <- combinatorics.

Deligne-Lusztig theory provides the first link, while the works of Kazhdan-

Lusztig tells us we can use the Weyl group or Hecke algebra to study the

geometry of Deligne-Lusztig varieties.

What we know before is that from a character  of max torus (maximal abelian

diagonalizable subgroups)  we get a representation of  by

induction . The problem is that maximal tori over  are not all isomorphic.

What Deligne-Lusztig theory tells us is how to do induction from non-split tori.

Let’s review the classical theory of induction. For what follows, let , 

be the maximal torus of diagonal matrices,  the Borel subgroup of upper

triangular matrices, and  the unipotent radical of upper triangular matrices with

all ones on the diagonal. We start with the case of . Let  be the character of 

 given by 

let  be the space of holomorphic functions  such that  is

holomorphic and  for . This is the same as function 

. Hartog’s theorem tells us that  extends to

a holomorphic function . such that , which

implies  is homogeneous polynomial of degree , so 

with .

Similarly for , we start with a character  where 

(there are  many of them), define  to be essentially the above

construction.
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We next compute how many irreducible representation arises from this

construction and how many are missing. We start with computing the number of

irreducible representations, which is the number of conjugacy classes. We claim

there are  many of them. Basic combinatorics gives that 

 and , , 

. The conjugacy classes in  can be classified by

characteristic polynomials. There are three cases, either it is a complete square

over  (two choices for each ; or it has distinct eigenvalues (for each

unordered pair , ; or if it is irreducible of the form ,

in which case it is conjugate to  (number = ).

Below are three facts about the representations :

If , then  is irreducible;

 iff  or  differs from  by a flip ;

 where  is a -dimensional irreducible representation

(Steiberg representation);

If , then .

Finally the counting gives  many

irreducible representations from , and we need  missing ones.

Now we prove the facts we just used. The three main ingredients are

Mackey’s formula: .

Projection formula: 

Bruhat decomposition:  is an

isomorphism

From this we easily get the lemma  by

applying Frobenius reciprocity and Mackey’s formula.

Using this (and the projection formula for 4) we easily prove all four facts.

There is a map  (depending on a choice of . The

image is an example of nonsplit torus. Note that  has minimal polynomial 

 where  and . From this we see

that in matrix form ; Also, over ,  is conjugate

to 

1. 

2. 

3. 

4. 

• 

• 

• 



Let  stands for the nonsplit torus (  stands for the nontrivial Weyl group

element). This is something more general: Deligne-Lusztig showed that the 

-conjugacy classes of max torus in  are in bijection with conjugacy

classes in the Weyl group.

There are  many characters of , but some of them come from the split

torus from the norm map  which is . This map is

surjective. Therefore a character  of  pullback to a character  of . The

regular characters are those that don’t come from this, whose number is 

. An easy criterion for regular character is that 

 (essentially because of Hilbert 90, since  iff 

). The number of orbits of the set of regular characters under 

has number is .

Algebraic construction (due to Gelfand-Graev): For each regular , we

want to construct an irregular representation of dimension  of dimension

equal to , and . Consider the nontrivial character 

 given by  (or just pick one). Consider 

 (called the G-G representation). Consider the isotypic

component . Consider . The proof

that this is the sought-after cuspidal representations is just to compute

everything. More precisely, let  be the character (virtual a priori), we need five

computations (using formula for character of induction):

, 

, 

 if 

 if 

Note that , so  is an irreducible representation.

Note that -representation  makes sense for general , all we need to

replace is  by the unipotent radical of a split Borel and a nontrivial character 

. In the previous case, we see all cuspidal representaions are summands of .

This is true for  but fails for , so we need some other way for general

groups of Lie type.

Fact about : Multiplcity one holds for . In the case of , all irreps

except the one-dimensional one appears. Irreducible summands of  are

generic (i.e. admits Whittaker model).

• 

• 

• 

• 

• 



Another exercise is compute what is , it is harder to use Mackey formula

since it doesn’t extend to Borel so we don’t have the Bruhat decomposition.

Geometric construction: Consider , both 

 and  act on  and their actions commute, and if we consider the

induced actions on  then this gives us a way to match the

representations of  with the characters of .

Weil representation: .

If  is regular, then . Andre Weil discovered that this

space carries an action of :

, 

where  is a nontrivial character of the additive group.

• 

• 

• 

• 
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