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The famous Hilbert’s tenth problem concerns the decidablity for the problem of

determining existence of solutions to systems of polynomial equations over

various rings and fields. One of the case of most interest to number theorists is

that over the integers, which has been shown in 1970s by Matiyasevich et al. that

the answer is negative, i.e. there doesn’t exists an algorithm that can determine

the solvability of an arbitrary diophantine equation (and one can even construct

such a polynomial explicitly from the proof, see this mathoverflow answer).

Roughly speaking the idea is that diophantine equations are rich and complex

enough to simulate a computer. More precisely, call  a diophantine set if

there exists a (multivariate) polynomial  with integer coefficients

such that 

It is easy to see every diophatine set is recursively enumerable (r.e.), i.e. there

exists an computation procedure that prints every elements of  and nothing

else. The upshot is that the converse is true, and the undecidability follows from

that of the Halting’s Problem, a r.e. problem that is not decidable.

Other than  another case of central interest is that over . This amounts to a

decision procedure for existence of rational points on an arbitrary variety, which

is very hard and seems unlikely to exist in general. One path towards a negative

solution is to show that  is a diophantine subset of , but assuming a very

strong conjecture in arithmetic geometry, that is, the Bombieri-Lang conjecture,

this is impossible, as shown in this paper by Koenigsmann (The primary goal of

Koenigsmann is to show that  is diophatine!). For some reason the

argument doesn’t appear in the publicated version. For the record let me sketch it

below.

First we need the version of Bombieri-Lang from Hindry & Silverman’s

Diophantine geometry, section F.5.2:

Let  be a projective variety. The special subset  of  is the

Zariski closure of the union of all images of nontrivial rational maps 

, where  is an abelian variety. If  is defined over a number

field , and let , the conjecture states that  is finite

for every finite extension .
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The intuition for this conjecture is that varieties of general type have few rational

points (see this mathoverflow question for how to think of general type variety).

In dimension one this is precisely Mordell’s conjecture proved by Faltings. The

version of Bombieri-Lang stated above is even stronger (By this answer, a

variety of general type cannot be dominated by abelian varieties.), and

essentially it states that almost all rational points are accounted by abelian

varieties. (Note that projective spaces have a dense set of rational points, but of

course they are dominated by product of , which is, in turn, dominated by

elliptic curve.)

Assuming this conjecture, and using another result of Faltings on finiteness of

integral points on  where  is an abelian variety and  is an ample

divisor (see Corollary 6.2 of this paper), we easily conclude that if  is

Zariski dense in  for a hypersurface , then so is the subset of 

consisting of points with first coordinate in , which implies that no

infinine subset of  can be a diophantine subset of .

There is another conjecture by Mazur of topological flavour that also rules out 

being Diophantine over . It states that the topological closure of  in 

 has finitely many connected component.

Apart from , people would also like to generalize the undecidability of

polynomial equations to other rings of integers  of a number field , such as

the ring of Gaussian integers . The crucial barrier is to prove the

exponential relation  is diophantine (which serves as a

fundamental building block for showing other r.e. relations are diophantine).

This step is done by Yuri Matiyasevich, and it uses the fact that the solution to

Pell’s equation  form an abelian group of rank 1 (norm one

elements of the algebraic torus ), which only works for certain

fields (like totally real fields). The use of Pell’s equation seems to related to 

Pell’s number, which are numerators and denomiantors of solution to Pells

equations, have exponential growth.

Therefore, instead of using Pell’s equation (whose group of solutions may not

have rank 1 over higher number fields), the idea of Poonen & Shlapentokh is to

replace it with other finitely generated abelian groups, such as the group of

rational points of elliptic curves. This line of attack probably goes back to Jan

Denef, in particular this paper answering Hilbert’s tenth problem over the

function field  in the negative. We will mention more about Hilbert’s tenth

problem over function fields in the future (hopefully).

The upshot is that they successfully reduce the Hilbert’s tenth problems over an

arbitrary ring of integers to a statement about existence of certain elliptic curves:
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(Shlapentokh, Theorem 1.9) If  is an extension of number fields and

if there exists an elliptic curve  such that ,

then  is Diophantine over . In particular, if Hilbert’s tenth problem

over  has a negative answer, so is that over .

The intuition why this theorem is true is that the existence of such an elliptic

curve allows us to ‘assess’  since after killing all the torsion points defined

over  we have  for . See this for a simple proof in the

special case where .

Finally for the climax, two separate groups of mathematicians have shown that

the hypothesis to the above theorem indeed holds. One of the team (Peter

Koymans and Carlo Pagano) uses 2-Selmer groups of elliptic curve (and a

blackbox Green-Tao type result for number fields) and another one (Levent

Alpöge, Manjul Bhargava, Wei Ho, and Ari Shnidman) uses -Selmer groups of

Jacobians of hyperelliptic curves (and also a result from additive combinatorics

albeit more classical). More on this in the next post.

Edit: We give an outline as to how Matiyasevich showed the graph of  is

Diophatine (for anecdote see here). Using Pell’s equation we can show that 

 is diophantine. More generally, if 

, then we can take . The key step is

to show the graph  is diophatine. The rough idea is that using

the Bernoulli’s identity , we can get 

. Along similar lines we can show a stronger lemma that

 is diophatine. Then 

for . This is because . Using the exponential relation

we can show lots of other relations are diophantine as well, e.g. 

coefficient of  in the base  expansion of ;

 is the coefficient of  in the base  expansion of ;

 for 

Using these relations we can encode computation (e.g. we can now talk about

sequences).
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